Skip to main content
Log in

Hemispheric Asymmetry in the Sunspot Cycle as a Nonextensive Phenomenon

  • Research
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

The appearance of dark sunspots over the solar photosphere is not considered to be symmetric between the northern and southern hemispheres. Among the different conclusions obtained by several authors, we can point out that the north–south asymmetry is a real and systematic phenomenon and is not due to random variability. In the present work, we select the sunspot area data of a sample of 13 solar cycles divided by hemisphere extracted from the Royal Greenwich Observatory and USAF/NOAA Sunspot databases to investigate the behavior of probability distributions using an out-of-equilibrium statistical model, also known as nonextensive statistical mechanics. Based on this statistical framework, we obtain that the nonextensive entropic parameter \(q\) has a semisinusoidal variation with a period of ≈ 22 years (Hale cycle). Among the most significant results, we can highlight that the asymmetry index \(q(A)\) supports the dominance of the northern hemisphere over the southern one, a result already confirmed by other authors who used the same data but with different statistical methods. Thus, we conclude that the parameter \(q(A)\) can be considered an effective measure for diagnosing daily variations of the solar dynamo. Finally, our study opens a new approach to investigating solar variability from the nonextensive perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Notes

  1. The catalog can be downloaded from the website: https://solarscience.msfc.nasa.gov/.

  2. https://archivesearch.lib.cam.ac.uk/repositories/2/archival_objects/97323/.

References

  • Abe, S.: 1997, A note on the \(q\)-deformation-theoretic aspect of the generalized entropies in nonextensive physics. Phys. Lett. A 224, 326. DOI.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Anteneodo, C., Plastino, A.R.: 1999, Maximum entropy approach to stretched exponential probability distributions. J. Phys. A, Math. Gen. 32, 1089. DOI.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Badalyan, O.G., Obridko, V.N.: 2017, North–south asymmetry of solar activity as a superposition of two realizations – the sign and absolute value. Astron. Astrophys. 603, A109. DOI.

    Article  ADS  Google Scholar 

  • Balmaceda, L.A., Solanki, S.K., Krivova, N.A., Foster, S.: 2009, A homogeneous database of sunspot areas covering more than 130 years. J. Geophys. Res. 114.

  • Bell, B.: 1962, A long-term north–south asymmetry in the location of solar sources of great geomagnetic storms. Smithson. Contrib. Astrophys. 5, 187.

    Article  ADS  Google Scholar 

  • Borges, E.P., Roditi, I.: 1998, A family of nonextensive entropies. Phys. Lett. A 246, 399. DOI.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Burlaga, L.F., F.-Viñas, A.: 2004, Multiscale structure of the magnetic field and speed at 1 AU during the declining phase of solar cycle 23 described by a generalized Tsallis probability distribution function. J. Geophys. Res. 109. DOI.

  • Campos Rozo, J.I., Utz, D., Vargas Domínguez, S., Veronig, A., Van Doorsselaere, T.: 2019, Photospheric plasma and magnetic field dynamics during the formation of solar AR 11190. Astron. Astrophys. 622, 0. DOI.

    Article  Google Scholar 

  • Carbonell, M., Oliver, R., Ballester, J.L.: 1993, On the asymmetry of solar activity. Astron. Astrophys. 274, 497.

    ADS  Google Scholar 

  • Chowdhury, P., Choudhary, D.P., Gosain, S.: 2013, A study of the hemispheric asymmetry of sunspot area during solar cycles 23 and 24. Astrophys. J. 768, 188. DOI.

    Article  ADS  Google Scholar 

  • Clark, D.H., Stephenson, F.R.: 1978, An interpretation of the pre-telescopic sunspot records from the orient. Q. J. Roy. Astron. Soc. 19, 387. ADS.

    ADS  Google Scholar 

  • Cowling, T.G.: 1933, The magnetic field of sunspots. Mon. Not. Roy. Astron. Soc. 94, 39. DOI.

    Article  ADS  MATH  Google Scholar 

  • Das, R., Ghosh, A., Karak, B.B.: 2022, Is the hemispheric asymmetry of sunspot cycle caused by an irregular process with long-term memory? Mon. Not. Roy. Astron. Soc. 511, 472. DOI.

    Article  ADS  Google Scholar 

  • de Freitas, D.B.: 2021, Stellar age dependence of the nonextensive magnetic braking index: a test for the open cluster \(\upalpha \)Per. Europhys. Lett. 135, 19001. DOI.

    Article  ADS  Google Scholar 

  • de Freitas, D.B., De Medeiros, J.R.: 2013, A non-extensive approach to the stellar rotational evolution – I. F- and G-type stars. Mon. Not. Roy. Astron. Soc. 433, 1789. DOI.

    Article  ADS  Google Scholar 

  • de Freitas, D.B., Medeiros, J.R.D.: 2009, Nonextensivity in the solar magnetic activity during the increasing phase of solar cycle 23. Europhys. Lett. 88, 19001. DOI.

    Article  ADS  Google Scholar 

  • de Freitas, D.B., Viana, C.A.P.: 2020, Non-extensive processes associated with heating of the Galactic disc. Europhys. Lett. 131, 69002. DOI.

    Article  ADS  Google Scholar 

  • de Freitas, D.B., Cavalcante, F.J., Soares, B.B., Silva, J.R.P.: 2015, A nonextensive view of the stellar braking indices. Europhys. Lett. 111, 39003. DOI.

    Article  ADS  Google Scholar 

  • Deng, L.H., Xiang, Y.Y., Qu, Z.N., An, J.M.: 2016, Systematic regularity of hemispheric sunspot areas over the past 140 years. Astrophys. J. 151, 70. DOI.

    Article  ADS  Google Scholar 

  • Deng, L., Zhang, X., An, J., Cai, Y.: 2017, Statistical properties of solar \(H\upalpha \) flare activity. J. Space Weather Space Clim. 7, A34. DOI.

    Article  ADS  Google Scholar 

  • Deng, L.H., Zhang, X.J., Li, G.Y., Deng, H., Wang, F.: 2019, Phase and amplitude asymmetry in the quasi-biennial oscillation of solar \(H\upalpha \) flare activity. Mon. Not. Roy. Astron. Soc. 488, 111. DOI.

    Article  ADS  Google Scholar 

  • Deng, L.H., Fei, Y., Deng, H., Mei, Y., Wang, F.: 2020, Spatial distribution of quasi-biennial oscillations in high-latitude solar activity. Mon. Not. Roy. Astron. Soc. 494, 4930. DOI.

    Article  ADS  Google Scholar 

  • Donner, R., Thiel, M.: 2007, Scale-resolved phase coherence analysis of hemispheric sunspot activity: a new look at the north-south asymmetry. Astron. Astrophys. 475, L33. DOI.

    Article  ADS  Google Scholar 

  • Druyvesteyn, M.: 1930, Influence of energy loss by elastic collisions in the theory of electron diffusion. Physica 10, 61. DOI.

    Article  Google Scholar 

  • Druyvesteyn, v.M.J.: 1934, Bemerkungen zu zwei früheren Arbeiten über die Elektronendiffusion. Physica 1, 1003. DOI.

    Article  ADS  Google Scholar 

  • Du, J., Song, Y.: 2010, Solar Wind Speed Theory and the Nonextensivity of Solar Corona, Astrophys. Space Sci. Proc. Springer, Berlin, 93.

    MATH  Google Scholar 

  • El-Borie, M.A., Abdel-halim, A.A., El-Monier, S.Y.: 2016, North–South asymmetry of the solar parameters during the different solar cycles. J. Taibah Univ. Sci. 10, 311. DOI.

    Article  Google Scholar 

  • El-Borie, M.A., El-Taher, A.M., Thabet, A.A., Ibrahim, S.F., Bishara, A.A.: 2021, North–South asymmetry of some solar parameters: A study based on the dominance of hemispheric sunspot activity during the solar cycles 18–24. Chin. Phys. 72, 1. DOI.

    Article  Google Scholar 

  • Fligge, M., Solanki, S.K.: 1997, Inter-cycle variations of solar irradiance: sunspot areas as a pointer. Solar Phys. 173, 427. DOI.

    Article  ADS  Google Scholar 

  • Forbes, E.G., Meadows, A.J., Howse, D., Norberg, A.L.: 1976, Greenwich observatory: vol. 1, origins and early history; vol. 2, recent history; vol. 3, the buildings and instruments. Phys. Today 29, 59. DOI.

    Article  Google Scholar 

  • Forgács-Dajka, E., Dobos, L., Ballai, I.: 2021, Time-dependent properties of sunspot groups – I. Lifetime and asymmetric evolution. Astron. Astrophys. 653, A50. DOI.

    Article  ADS  Google Scholar 

  • Foukal, P.: 2014, An explanation of the differences between the sunspot area scales of the Royal Greenwich and Mt. Wilson observatories, and the SOON program. Solar Phys. 289, 1517. DOI.

    Article  ADS  Google Scholar 

  • Frank, T.D., Daffertshofer, A.: 1999, Nonlinear Fokker–Planck equations whose stationary solutions make entropy-like functionals stationary. Physica A 272, 497. DOI.

    Article  ADS  MathSciNet  Google Scholar 

  • Hathaway, D.H.: 2010, The solar cycle. Living Rev. Solar Phys. 7, 1. DOI.

    Article  ADS  Google Scholar 

  • Hathaway, D.H., Wilson, R.M., Reichmann, E.J.: 2002, Group sunspot numbers: sunspot cycle characteristics. Solar Phys. 211, 357. DOI.

    Article  ADS  Google Scholar 

  • Hiremath, K.M.: 2006, The solar cycle as a forced and damped harmonic oscillator: long-term variations of the amplitudes, frequencies and phases. Astron. Astrophys. 452, 591. DOI.

    Article  ADS  Google Scholar 

  • Hudson, H.S.: 2021, Carrington events. Annu. Rev. Astron. Astrophys. 59, 445. DOI.

    Article  ADS  Google Scholar 

  • Javaraiah, J.: 2022, Long-term variations in solar activity: predictions for amplitude and North–south asymmetry of solar cycle 25. Solar Phys. 297, 33. DOI.

    Article  ADS  Google Scholar 

  • Kaniadakis, G.: 2002, Statistical mechanics in the context of special relativity. Phys. Rev. E 66, 056125. DOI.

    Article  ADS  MathSciNet  Google Scholar 

  • Kotov, V.A.: 2015, On the origin of the 22 years solar cycle. Adv. Space Res. 55, 979. DOI. Cosmic Magnetic Fields.

    Article  ADS  Google Scholar 

  • Kwak, S.G., Kim, J.H.: 2017, Central limit theorem: the cornerstone of modern statistics. Korean J. Anesthesiol. 70, 144. DOI.

    Article  Google Scholar 

  • Landsberg, P.T., Vedral, V.: 1998, Distributions and channel capacities in generalized statistical mechanics. Phys. Lett. A 247, 211. DOI.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Leubner, M.P., Vörös, Z.: 2005a, A nonextensive entropy approach to solar wind intermittency. Astrophys. J. 618, 547. DOI.

    Article  ADS  Google Scholar 

  • Leubner, M.P., Vörös, Z.: 2005b, A nonextensive entropy path to probability distributions in solar wind turbulence. Nonlinear Process. Geophys. 12, 171. DOI.

    Article  ADS  Google Scholar 

  • Levenberg, K.: 1944, A method for the solution of certain non-linear problems in least squares. Q. Appl. Math. 2, 164. DOI.

    Article  MathSciNet  MATH  Google Scholar 

  • Li, K.J., Shi, X.J., Xie, J.L., Gao, P.X., Liang, H.F., Zhan, L.S., Feng, W.: 2013, Solar-cycle-related variation of solar differential rotation. Mon. Not. Roy. Astron. Soc. 433, 521. DOI.

    Article  ADS  Google Scholar 

  • Mandal, S., Krivova, N.A., Solanki, S.K., Sinha, N., Banerjee, D.: 2020, Sunspot area catalog revisited: daily cross-calibrated areas since 1874. Astron. Astrophys. 640, A78. DOI.

    Article  ADS  Google Scholar 

  • Marquardt, D.W.: 1963, An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11, 431.

    Article  MathSciNet  MATH  Google Scholar 

  • Newton, H.W.: 1958, The Face of the Sun, Pelican Books, Penguin Books, ???.

    Google Scholar 

  • Newton, H.W., Milsom, A.S.: 1955, Note on the observed differences in spottedness of the Sun’s northern and southern hemispheres. Mon. Not. Roy. Astron. Soc. 115, 398. DOI.

    Article  ADS  Google Scholar 

  • Norton, A.A., Charbonneau, P., Passos, D.: 2014, Hemispheric coupling: comparing dynamo simulations and observations. Space Sci. Rev. 186, 251. DOI.

    Article  ADS  Google Scholar 

  • Papa, A.R.R.: 1998, On one-parameter-dependent generalizations of Boltzmann–Gibbs statistical mechanics. J. Phys. A, Math. Gen. 31, 5271. DOI.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Rényi, A.: 1961, On measures of entropy and information. In: Neyman, J. (ed.) 4th Berkeley Symposium on Mathematics, Statistics and Probability 42, University of California Press, Berkeley, CA, USA, 547.

    Google Scholar 

  • Robledo, A., Velarde, C.: 2022, How, Why and when Tsallis Statistical Mechanics Provides Precise Descriptions of Natural Phenomena. Entropy 24. DOI.

  • Rouillard, A.P., Viall, N., Pierrard, V., Vocks, C., Matteini, L., Alexandrova, O., Higginson, A.K., Lavraud, B., Lavarra, M., Wu, Y., Pinto, R., Bemporad, A., Sanchez-Diaz, E.: 2021, The Solar Wind, Wiley, New York.

    Book  Google Scholar 

  • Roy, J.-R.: 1977, The north–south distribution of major solar flare events, sunspot magnetic classes and sunspot areas (1955 – 1974). Solar Phys. 52, 53. DOI.

    Article  ADS  Google Scholar 

  • Schüssler, M., Cameron, R.H.: 2018, Origin of the hemispheric asymmetry of solar activity. Astron. Astrophys. 618, A89. DOI.

    Article  ADS  Google Scholar 

  • Schwabe, H.: 1844, Sonnenbeobachtungen im Jahre 1843. Von Herrn Hofrath Schwabe in Dessau. Astron. Nachr. 21, 233. DOI.

    Article  ADS  Google Scholar 

  • Sen, H.K., White, M.L.: 1972, A physical mechanism for the production of solar flares. Solar Phys. 23, 146. DOI.

    Article  ADS  Google Scholar 

  • Sharma, B.D., Mittal, D.P.: 1975, New nonadditive measures of entropy for discrete probability distributions. J. Math. Sci. 10, 28.

    MathSciNet  Google Scholar 

  • Thomas, S.R., Owens, M.J., Lockwood, M.: 2014, The 22-year hale cycle in cosmic ray flux: evidence for direct heliospheric modulation. Solar Phys. 289, 407. DOI.

    Article  ADS  Google Scholar 

  • Tsallis, C.: 1988, Possible generalization of Boltzmann–Gibbs statistics. J. Stat. Phys. 52, 479. DOI.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Tsallis, C.: 1994, What are the numbers that experiments provide? Quim. Nova 17, 468.

    Google Scholar 

  • Tsallis, C.: 1995, Some comments on Boltzmann–Gibbs statistical mechanics. Chaos Solitons Fractals 6, 539. DOI.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Tsallis, C.: 2002, Nonextensive statistical mechanics: a brief review of its present status. An. Acad. Bras. Ciênc. 74, 393.

    Article  MathSciNet  MATH  Google Scholar 

  • Tsallis, C.: 2009, Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World, Springer, New York. DOI.

    Book  MATH  Google Scholar 

  • Tsallis, C., Anteneodo, C., Borland, L., Osorio, R.: 2003, Nonextensive statistical mechanics and economics. Physica A 324, 89. DOI.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Umarov, S., Tsallis, C., Steinberg, S.: 2008, On a \(q\)-central limit theorem consistent with nonextensive statistical mechanics. Milan J. Math. 76, 307. DOI.

    Article  MathSciNet  MATH  Google Scholar 

  • Usoskin, I.G., Mursula, K.: 2003, Long-term solar cycle evolution: review of recent developments. Solar Phys. 218, 319. DOI.

    Article  ADS  Google Scholar 

  • Veronig, A.M., Jain, S., Podladchikova, T., Pötzi, W., Clette, F.: 2021, Hemispheric sunspot numbers 1874 – 2020. Astron. Astrophys. 652, A56. DOI.

    Article  ADS  Google Scholar 

  • Vizoso, G., Ballester, J.L.: 1989, Periodicities in the north–south asymmetry of solar activity. Solar Phys. 119, 411. DOI.

    Article  ADS  Google Scholar 

  • Vizoso, G., Ballester, J.L.: 1990, The north–south asymmetry of sunspots. Astron. Astrophys. 229, 540.

    ADS  Google Scholar 

  • Waldmeier, M.: 1957, Der lange Sonnenzyklus. Mit 3 Textabbildungen. Z. Astrophys. 43, 149.

    ADS  Google Scholar 

  • Waldmeier, M.: 1971, The asymmetry of solar activity in the years 1959 – 1969. Solar Phys. 20, 332. DOI.

    Article  ADS  Google Scholar 

  • Willis, D.M., Coffey, H.E., Henwood, R., Erwin, E.H., Hoyt, D.V., Wild, M.N., Denig, W.F.: 2013, The greenwich photo-heliographic results (1874 – 1976): summary of the observations, applications, datasets, definitions and errors. Solar Phys. 288, 117. DOI.

    Article  ADS  Google Scholar 

  • Wittmann, A.D., Xu, Z.T.: 1987, A catalogue of sunspot observations from 165 BC to AD 1684. Astron. Astrophys. Suppl. 70, 83. ADS.

    ADS  Google Scholar 

  • Xu, H., Fei, Y., Li, C., Liang, J., Tian, X., Wan, Z.: 2021, The North–South Asymmetry of Sunspot Relative Numbers Based on Complex Network Technique. Symmetry 13. DOI.

  • Zou, Y., Donner, R.V., Marwan, N., Small, M., Kurths, J.: 2014, Long-term changes in the north–south asymmetry of solar activity: a nonlinear dynamics characterization using visibility graphs. Nonlinear Process. Geophys. 21, 1113. DOI.

    Article  ADS  Google Scholar 

Download references

Acknowledgments

DBdeF acknowledges financial support from the Brazilian agency CNPq-PQ2 (Grant No. 305566/2021-0). Research activities of STELLAR TEAM of the Federal University of Ceará are supported by continuous grants from the Brazilian agency CNPq. This paper includes data collected by the NASA’s Marshall Space Flight Center (MSFC). Support for this database is provided by the NASA Science Mission directorate. Funding for this database terminated in FY2005 (last update 2017/03/23). All data presented in this paper are obtained from the Royal Observatory, Greenwich - USAF/NOAA Sunspot Data. Data of our analyses presented in this paper will be shared on reasonable request to the corresponding author.

Funding

This research received no specific grant from any funding agency.

Author information

Authors and Affiliations

Authors

Contributions

L. F. G. Batista and D. B. de Freitas wrote the main manuscript text, and T. M. Santiago, P. C. F. da Silva Filho, and C. V. Silva prepared figures, tables, and statistical procedures. All authors reviewed the manuscript.

Corresponding author

Correspondence to Leonardo F. G. Batista.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batista, L.F.G., Santiago, T.M., da Silva Filho, P.C.F. et al. Hemispheric Asymmetry in the Sunspot Cycle as a Nonextensive Phenomenon. Sol Phys 298, 84 (2023). https://doi.org/10.1007/s11207-023-02179-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-023-02179-6

Keywords

Navigation