Skip to main content
Log in

Hemispheric Coupling: Comparing Dynamo Simulations and Observations

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Numerical simulations that reproduce solar-like magnetic cycles can be used to generate long-term statistics. The variations in north-south hemispheric solar cycle synchronicity and amplitude produced in simulations has not been widely compared to observations. The observed limits on solar cycle amplitude and phase asymmetry show that hemispheric sunspot area production is no more than 20 % asymmetric for cycles 17–23 and that phase lags do not exceed 20 % (or two years) of the total cycle period, as determined from Royal Greenwich Observatory sunspot data. Several independent studies have found a long-term trend in phase values as one hemisphere leads the other for, on average, four cycles. Such persistence in phase is not indicative of a stochastic phenomenon. We compare these observational findings to the magnetic cycle found in a numerical simulation of solar convection recently produced with the EULAG-MHD model. This long “millennium simulation” spans more than 1600 years and generated 40 regular, sunspot-like cycles. While the simulated cycle length is too long (∼40 yrs) and the toroidal bands remain at too high of latitudes (>30°), some solar-like aspects of hemispheric asymmetry are reproduced. The model is successful at reproducing the synchrony of polarity inversions and onset of cycle as the simulated phase lags do not exceed 20 % of the cycle period. The simulated amplitude variations between the north and south hemispheres are larger than those observed in the Sun, some up to 40 %. An interesting note is that the simulations also show that one hemisphere can persistently lead the other for several successive cycles, placing an upper bound on the efficiency of transequatorial magnetic coupling mechanisms. These include magnetic diffusion, cross-equatorial mixing within latitudinally-elongated convective rolls (a.k.a. “banana cells”) and transequatorial meridional flow cells. One or more of these processes may lead to magnetic flux cancellation whereby the oppositely directed fields come in close proximity and cancel each other across the magnetic equator late in the solar cycle. We discuss the discrepancies between model and observations and the constraints they pose on possible mechanisms of hemispheric coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. In the technical jargon of this research field it is very common to use an integer number to represent spatial dimensions and 0.5 to make allusion to the time. Therefore 1.5D means one spatial dimension plus time.

References

  • E. Antonucci, J.T. Hoeksema, P.H. Scherrer, Astrophys. J. 360, 296 (1990)

    ADS  Google Scholar 

  • R. Arlt, R. Leussu, N. Giese, K. Mursula, I.G. Usoskin, Mon. Not. R. Astron. Soc. 433, 3165 (2013)

    ADS  Google Scholar 

  • R. Arlt, N. Weiss, Space Sci. Rev. (2014, this issue). doi:10.1007/s11214-014-0063-5

    Google Scholar 

  • H.D. Babcock, Astrophys. J. 130, 364 (1959)

    ADS  Google Scholar 

  • J.L. Ballester, R. Oliver, M. Carbonell, Astron. Astrophys. 431, 5L (2005)

    ADS  Google Scholar 

  • L.A. Balmaceda, S.K. Solanki, N.A. Krivova, S. Foster, J. Geophys. Res. 114, A07104 (2009)

    ADS  Google Scholar 

  • P. Beaudoin, P. Charbonneau, É. Racine, P.K. Smolarkiewicz, Sol. Phys. 282, 335–360 (2013)

    ADS  Google Scholar 

  • U. Becker, Z. Astrophys. 37, 47 (1955)

    ADS  Google Scholar 

  • J. Beer, S.M. Tobias, N.O. Weiss, Sol. Phys. 181, 237 (1998)

    ADS  Google Scholar 

  • E.E. Benevolenskaya, Highlights Astron. 14, 273 (2007)

    ADS  Google Scholar 

  • T.E. Berger, M.G. Löfdahl, R.A. Shine, A.M. Title, Astrophys. J. 506, 439 (1998)

    ADS  Google Scholar 

  • D.W. Boyer, E.H. Levy, Astrophys. J. 277, 848 (1984)

    ADS  Google Scholar 

  • A. Brandenburg, K. Subramanian, Phys. Rep. 417, 1–209 (2005)

    ADS  MathSciNet  Google Scholar 

  • A.-M. Broomhall, P. Chatterjee, R. Howe, A.A. Norton, M.J. Thompson, Space Sci. Rev. (2014, this issue). doi:10.1007/s11214-014-0101-3

    Google Scholar 

  • B.P. Brown, M.K. Browning, A.S. Brun, M.S. Miesch, J. Toomre, Astrophys. J. 711, 424 (2010)

    ADS  Google Scholar 

  • B.P. Brown, M.S. Miesch, M.K. Browning, A.S. Brun, J. Toomre, Astrophys. J. 731, 69 (2011)

    ADS  Google Scholar 

  • M.K. Browning, M.S. Miesch, A.S. Brun, J. Toomre, Astrophys. J. Lett. 648, L157–160 (2006)

    ADS  Google Scholar 

  • P. Bushby, Mon. Not. R. Astron. Soc. 328, 655 (2003)

    ADS  Google Scholar 

  • F.H. Busse, Phys. Fluids 14, 1301–1314 (2002)

    ADS  MathSciNet  Google Scholar 

  • P. Caligari, F. Moreno-Insertis, M. Schüssler, Astrophys. J. 441, 886 (1995)

    ADS  Google Scholar 

  • R.H. Cameron, M. Schüssler, Astrophys. J. 659, 801 (2007)

    ADS  Google Scholar 

  • R.H. Cameron, J. Jian, M. Schüssler, L. Gizon, J. Geophys. Res. 119, 680 (2014)

    Google Scholar 

  • M. Carbonell, R. Oliver, J.L. Ballester, Astron. Astrophys. 274, 497 (1993)

    ADS  Google Scholar 

  • M. Carbonell, J. Terradas, R. Oliver, J.L. Ballester, Astron. Astrophys. 476, 951 (2007)

    ADS  Google Scholar 

  • J. Chae, Y.E. Litvinenko, T. Sakurai, Astrophys. J. 683, 1153 (2008)

    ADS  Google Scholar 

  • P. Charbonneau, Sol. Phys. 229, 345 (2005)

    ADS  Google Scholar 

  • P. Charbonneau, Adv. Space Res. 40, 899 (2007)

    ADS  Google Scholar 

  • P. Charbonneau, Living Rev. Sol. Phys. 7, 3 (2010)

    ADS  Google Scholar 

  • P. Charbonneau, Annu. Rev. Astron. Astrophys. 52(1), 251 (2014)

    ADS  Google Scholar 

  • P. Charbonneau, G. Barlet, J. Atmos. Sol.-Terr. Phys. 7(73), 198 (2011)

    ADS  Google Scholar 

  • P. Chatterjee, A.R. Choudhuri, Sol. Phys. 239, 29 (2006)

    ADS  Google Scholar 

  • P. Chatterjee, D. Nandy, A.R. Choudhuri, Astron. Astrophys. 427, 1019 (2004)

    ADS  Google Scholar 

  • A.R. Choudhuri, Astron. Astrophys. 253, 277 (1992)

    ADS  MATH  Google Scholar 

  • A.R. Choudhuri, P.A. Gilman, Astrophys. J. 316, 788 (1987)

    ADS  Google Scholar 

  • P. Chowdhury, D.P. Choudhary, S. Gosain, Astrophys. J. 768, 188 (2013)

    ADS  Google Scholar 

  • F. Clette, L. Svalgaard, J.M. Vaquero, E.W. Cliver, Space Sci. Rev. (2014, this issue). doi:10.1007/s11214-014-0074-2

    Google Scholar 

  • J.-F. Cossette, P. Charbonneau, P.K. Smolarkiewicz, Astrophys. J. Lett. 777, L29 (2013)

    ADS  Google Scholar 

  • M. Dasi-Espuig, S.K. Solanki, N. Krivova, R. Cameron, T. Peñuela, Astron. Astrophys. 518, 10 (2010)

    Google Scholar 

  • M. Dikpati, P.A. Gilman, Astrophys. J. 559, 428–442 (2001)

    ADS  Google Scholar 

  • M. Dikpati, G. de Toma, P.A. Gilman, C.N. Arge, O.R. White, Astrophys. J. 601, 1136 (2004)

    ADS  Google Scholar 

  • M. Dikpati, G. de Toma, P.A. Gilman, Geophys. Res. Lett. 33, L05102 (2006)

    ADS  Google Scholar 

  • C.J. Durrant, P.R. Wilson, Sol. Phys. 214, 23 (2003)

    ADS  Google Scholar 

  • T.L. Duvall Jr., S.M. Jefferies, J.W. Harvey, M.A. Pomerantz, Nature 362, 430 (1993)

    ADS  Google Scholar 

  • Y. Fan, F. Fang, Astrophys. J. 789, 35 (2014)

    ADS  Google Scholar 

  • M. Ghizaru, P. Charbonneau, P.K. Smolarkiewicz, Astrophys. J. Lett. 715, L133–137 (2010)

    ADS  Google Scholar 

  • A. Goel, A.R. Choudhuri, Res. Astron. Astrophys. 9, 115 (2009)

    ADS  Google Scholar 

  • D.H. Hathaway, D. Nandy, R.M. Wilson, E.J. Reichmann, Astrophys. J. 589, 665 (2003)

    ADS  Google Scholar 

  • F. Hill, Astrophys. J. 343, L69 (1989)

    ADS  Google Scholar 

  • H. Hotta, T. Yokoyama, Astrophys. J. Lett. 714, L308 (2010)

    ADS  Google Scholar 

  • R. Howe, D. Baker, L. Harra, L. van Driel-Gesztelyi, R. Komm, F. Hill, I. González Hernández, ASP Conf. Ser. 478, 291 (2013)

    ADS  Google Scholar 

  • P. Hoyng, Astrophys. J. 332, 857 (1988)

    ADS  Google Scholar 

  • P. Hoyng, D. Schmitt, L.J.W. Teuben, Astron. Astrophys. 289, 265 (1994)

    ADS  Google Scholar 

  • J. Jiang, D.H. Hathaway, R.H. Cameron, S.K. Solanki, L. Gizon, L. Upton, Space Sci. Rev. (2014, this issue). doi:10.1007/s11214-014-0083-1

    Google Scholar 

  • B. Joshi, A. Joshi, Sol. Phys. 219, 343 (2004)

    ADS  Google Scholar 

  • P.J. Käpylä, M.J. Mantere, A. Brandenburg, Astrophys. J. Lett. 755, L22 (2012)

    ADS  Google Scholar 

  • P.J. Käpylä, M.J. Mantere, E. Cole, J. Warnecke, A. Brandenburg, Astrophys. J. 778, 41 (2013)

    ADS  Google Scholar 

  • B. Karak et al., Space Sci. Rev. (2014, this issue)

  • R.W. Komm, R.F. Howard, J.W. Harvey, Sol. Phys. 158, 213 (1995)

    ADS  Google Scholar 

  • R. Komm, R. Howe, I. González Hernández, F. Hill, D. Haber, J. Phys. Conf. Ser. 271, 012077 (2011)

    ADS  Google Scholar 

  • R. Komm, R. Howe, I. González Hernández, F. Hill, R.S. Bogart, D. Haber, ASP Conf. Ser. 478, 217 (2013)

    ADS  Google Scholar 

  • F. Krause, K.-H. Rädler, Mean-Field Magnetohydrodynamics and Dynamo Theory (Pergamon Press, Oxford, 1980), 271 pp.

    MATH  Google Scholar 

  • K.J. Li, X.H. Liu, H.S. Yun, S.Y. Xiong, H.F. Liang, H.Z. Zhao, L.S. Zhan, X.M. Gu, Publ. Astron. Soc. Pac. 54, 629 (2002)

    ADS  Google Scholar 

  • D.W. Longcope, G.H. Fisher, Astrophys. J. 458, 380 (1996)

    ADS  Google Scholar 

  • N. Marwan, M.C. Romano, M. Thiel, J. Kurths, Phys. Rep. 438, 237 (2007)

    ADS  MathSciNet  Google Scholar 

  • E.W. Maunder, Mon. Not. R. Astron. Soc. 64, 747 (1904)

    ADS  Google Scholar 

  • B.H. McClintock, A.A. Norton, Sol. Phys. 287, 215 (2013)

    ADS  Google Scholar 

  • S.W. McIntosh et al., Astrophys. J. 765, 146 (2013)

    ADS  Google Scholar 

  • M.S. Miesch, J. Toomre, Annu. Rev. Fluid Mech. 41, 317–340 (2009)

    ADS  Google Scholar 

  • M. Miesch, J.R. Elliott, J. Toomre, T.L. Clune, G.A. Glatzmaier, P.A. Gilman, Astrophys. J. 532, 593 (2000)

    ADS  Google Scholar 

  • P. Mininni, D.O. Gómez, Astrophys. J. 573, 454 (2002)

    ADS  Google Scholar 

  • H.K. Moffatt, Magnetic Field Generation in Electrically Conducting Fluids (Cambridge University Press, Cambridge, 1978), 343 pp.

    Google Scholar 

  • D. Moss, A. Brandenburg, R. Tavakol, I. Tuominen, Astron. Astrophys. 265, 843 (1992)

    ADS  Google Scholar 

  • A. Muñoz-Jaramillo, N.R. Sheeley, J. Zhang Jr., E.E. Deluca, Astrophys. J. 753, 146 (2012)

    ADS  Google Scholar 

  • A. Muñoz-Jaramillo, M. Dasi-Espuig, L. Balmaceda, E. DeLuca, Astrophys. J. Lett. 767, L25 (2013a)

    ADS  Google Scholar 

  • A. Muñoz-Jaramillo, L. Balmaceda, E. DeLuca, Phys. Rev. Lett. 111, 041106 (2013b)

    ADS  Google Scholar 

  • J. Muraközy, A. Ludmány, Mon. Not. R. Astron. Soc. 419, 3624 (2012)

    ADS  Google Scholar 

  • K. Mursula, T. Hiltula, Geophys. Res. Lett. 30, 2135 (2003)

    ADS  Google Scholar 

  • N.J. Nelson, B.P. Brown, A.S. Brun, M.S. Miesch, J. Toomre, Astrophys. J. 762, 73 (2013)

    ADS  Google Scholar 

  • H.W. Newton, A.S. Milsom, Mon. Not. R. Astron. Soc. 115, 398 (1955)

    ADS  Google Scholar 

  • A.A. Norton, P.A. Gallagher, Sol. Phys. 261, 193 (2010)

    ADS  Google Scholar 

  • A.A. Norton, P.A. Gilman, Astrophys. J. 630, 1194 (2005)

    ADS  Google Scholar 

  • S.V. Olemskoy, L.L. Kitchatinov, Astrophys. J. 777, 71 (2013)

    ADS  Google Scholar 

  • M.A.J.H. Ossendrijver, Astron. Astrophys. Rev. 11, 287–367 (2003)

    ADS  Google Scholar 

  • A.J.H. Ossendrijver, P. Hoyng, D. Schmitt, Astron. Astrophys. 313, 938 (1996)

    ADS  Google Scholar 

  • A.J.H. Ossendrijver, M. Stix, A. Brandenburg, Astron. Astrophys. 376, 713 (2001)

    ADS  Google Scholar 

  • M.A.J.H. Ossendrijver, M. Stix, A. Brandenburg, G. Rüdiger, Astron. Astrophys. 394, 735–745 (2002)

    ADS  MATH  Google Scholar 

  • D. Passos, P. Charbonneau, Astron. Astrophys. 568, A113 (2014). doi:10.1051/0004-6361/201423700

    ADS  Google Scholar 

  • D. Passos, D. Nandy, S. Hazra, I. Lopes, Astron. Astrophys. 562, A18 (2014)

    Google Scholar 

  • V.V. Pipin, Astron. Astrophys. 346, 295 (1999)

    ADS  Google Scholar 

  • V.V. Pipin, A.G. Kosovichev, Astrophys. J. 776, 36 (2013)

    ADS  Google Scholar 

  • P.J. Pulkkinen, J. Brooke, J. Pelt, I. Tuominen, Astron. Astrophys. 341, L43 (1999)

    ADS  Google Scholar 

  • E. Racine, P. Charbonneau, M. Ghizaru, A. Bouchat, P.K. Smolarkiewicz, Astrophys. J. 735, 46 (2011)

    ADS  Google Scholar 

  • M. Rempel, in Heliophysics, ed. by C.J. Schrijver, G.L. Siscoe (2006), pp. 42–74

    Google Scholar 

  • J.C. Ribes, E. Nesme-Ribes, Astron. Astrophys. 276, 549 (1993)

    ADS  Google Scholar 

  • B. Schmieder et al., Space Sci. Rev. (2014, this issue). doi:10.1007/s11214-014-0088-9

    Google Scholar 

  • G.W. Simon, A.M. Title, N.O. Weiss, Astrophys. J. 442, 886 (1995)

    ADS  Google Scholar 

  • P.K. Smolarkiewicz, P. Charbonneau, J. Comput. Phys. 236, 608–623 (2013)

    ADS  MathSciNet  Google Scholar 

  • D. Sokoloff, E. Nesme-Ribes, Astron. Astrophys. 288, 293 (1994)

    ADS  Google Scholar 

  • G. Spörer, Publicationen des Astrophysikalischen Observatoriums zu Potsdam. Nr., vol. 32, Vol. 10, part 1 (Wilhelm Engelmann, Leipzig, 1894)

    Google Scholar 

  • X. Sun, Y. Liu, J.T. Hoeksema, K. Kayashi, X. Zhao, Sol. Phys. 270, 9 (2011)

    ADS  Google Scholar 

  • M. Temmer, J. Rybák, P. Bendík, A. Veronig, F. Vogler, W. Otruba, W. Pötzi, A. Hanslmeier, Astron. Astrophys. 447, 735 (2006)

    ADS  Google Scholar 

  • M. Ternullo, Mem. Soc. Astron. Ital. 78, 596 (2007)

    ADS  Google Scholar 

  • S. Tobias, Astron. Astrophys. 322, 1007 (1997)

    ADS  Google Scholar 

  • S.M. Tobias, N.H. Brummell, T.L. Clune, J. Toomre, Astrophys. J. 549, 1183–1203 (2001)

    ADS  Google Scholar 

  • I.I. Virtanen, K. Mursula, Astrophys. J. 781, 99 (2014)

    ADS  Google Scholar 

  • M. Waldmeier, Ergebnisse und Probleme der Sonnenforschung, 2nd edn. (Geest & Portig, Leipzig, 1955)

    Google Scholar 

  • N.O. Weiss, F. Cattaneo, C.A. Jones, Geophys. Astrophys. Fluid Dyn. 30, 305 (1984)

    ADS  MATH  MathSciNet  Google Scholar 

  • A. Yeates, D. Nandy, D.H. Mackay, Astrophys. J. 673, 544 (2008)

    ADS  Google Scholar 

  • J. Zhao, R.S. Bogart, A.G. Kosovichev, T.L. Duvall Jr., T. Hartlep, Astrophys. J. 774, 29 (2013)

    ADS  Google Scholar 

  • N.V. Zolotova, D.I. Ponyavin, N. Marwan, J. Kurths, Astron. Astrophys. 503, 197 (2009)

    ADS  Google Scholar 

  • N.V. Zolotova, D.I. Ponyavin, R. Arlt, I. Tuominen, Astron. Nachr. 331, 765 (2010)

    ADS  Google Scholar 

Download references

Acknowledgements

We thank Nicolas Lawson for producing some Figures and the analysis leading to Fig. 14. We thank S. McIntosh and N. Zolotova for allowing the reproduction of several figures regarding sunspot measures of hemispheric asymmetry. We thank J. Janssens for maintaining and updating the cycle 24 website. P. Charbonneau is supported by the Natural Sciences and Engineering Research Council of Canada. D. Passos acknowledges support from the Fundação para a Ciência e Tecnologia (FCT) grant SFRH/BPD/68409/2010, CENTRA-IST and the University of the Algarve for providing office space. A. Norton is supported by NASA Contract NAS5-02139 (HMI) to Stanford University. We thank the ISSI organizers for a most productive and insightful conference held in Bern in November 2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Norton.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Norton, A.A., Charbonneau, P. & Passos, D. Hemispheric Coupling: Comparing Dynamo Simulations and Observations. Space Sci Rev 186, 251–283 (2014). https://doi.org/10.1007/s11214-014-0100-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-014-0100-4

Keywords

Navigation