Skip to main content
Log in

Comparison Between Radio Loud and Radio Quiet Fast CMEs: A Reason for Radio Quietness

  • Research
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

It is well known that fast CMEs are mostly associated with magnetohydrodynamic (MHD) shocks in the solar corona, forming type-II radio bursts. However, the absence of type-II radio bursts is not uncommon. Herein, we aim to analyze the differences between the radio loud (RL) and radio quiet (RQ) fast Coronal Mass Ejections (CMEs) (speed ≥ 900 km s−1) during Solar Cycle 24 (2008 – 2021). From the 309 fast CMEs, we could identify 143 events with a known source origin on the visible disk (Earth view). We identified the associated flares/CMEs for 143 events using running-difference images from (i) Solar Dynamic Observatory/Atmospheric Imaging Assembly (SDO/AIA) and (ii) Large Angle Spectrometric Coronagraph (LASCO) observations. Among these 143 events, RQ and RL groups have 70 and 73 events, respectively. CALLISTO and Wind/WAVES observations are used to identify these RL and RQ sets. We analyzed the possibilities of streamer-CME and CME-CME interaction. In this study, we report the important differences between RL and RQ CMEs and the underlying reasons for the radio quietness of fast CMEs. In the LASCO field of view, the majority of RL CMEs (almost 90%) interacted with streamers and/or pre-CMEs, whereas only 25% of RQ CMEs did the same, and there was no pre-CME interaction. The observational evidence led to the conclusion that substantial density perturbation/interaction increases the probability of production of type-II radio emissions by the shock of RL CMEs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Notes

  1. www.ngdc.noaa.gov/.

  2. cdaw.gsfc.nasa.gov/CME-list/index.html/.

  3. cdaw.gsfc.nasa.gov/CME-list/radio/waves-type2.html.

  4. ftp.ngdc.noaa.gov/STP/.

References

  • Benz, A.O., Monstein, C., Meyer, H.: 2005, Callisto a new concept for solar radio spectrometers. Solar Phys. 226(1), 143. DOI. ADS.

    Article  ADS  Google Scholar 

  • Bougeret, J.-L., Kaiser, M.L., Kellogg, P.J., Manning, R., Goetz, K., Monson, S.J., Monge, N., Friel, L., Meetre, C.A., Perche, C., Sitruk, L., Hoang, S.: 1995, Waves: the radio and plasma wave investigation on the wind spacecraft. Space Sci. Rev. 71(1 – 4), 231. DOI. ADS.

    Article  ADS  Google Scholar 

  • Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., Socker, D.G., Dere, K.P., Lamy, P.L., Llebaria, A., Bout, M.V., Schwenn, R., Simnett, G.M., Bedford, D.K., Eyles, C.J.: 1995, The large angle spectroscopic coronagraph (LASCO). Solar Phys. 162, 357. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cane, H.V.: 1984, The relationship between coronal transients, type II bursts and interplanetary shocks. Astron. Astrophys. 140, 205. ADS.

    ADS  Google Scholar 

  • Chen, Y., Song, H.Q., Li, B., Xia, L.D., Wu, Z., Fu, H., Li, X.: 2010, Streamer waves driven by coronal mass ejections. Astrophys. J. 714(1), 644. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cho, K.-S., Bong, S.-C., Kim, Y.-H., Moon, Y.-J., Dryer, M., Shanmugaraju, A., Lee, J., Park, Y.D.: 2008, Low coronal observations of metric type II associated CMEs by MLSO coronameters. Astron. Astrophys. 491(3), 873. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cho, K.-S., Bong, S.-C., Moon, Y.-J., Shanmugaraju, A., Kwon, R.-Y., Park, Y.D.: 2011, Relationship between multiple type II solar radio bursts and CME observed by STEREO/SECCHI. Astron. Astrophys. 530, A16. DOI. ADS.

    Article  Google Scholar 

  • Cliver, E.W., Nitta, N.V., Thompson, B.J., Zhang, J.: 2004, Coronal shocks of November 1997 revisited: the cme type II timing problem. Solar Phys. 225, 105. DOI. ADS.

    Article  ADS  Google Scholar 

  • Dryer, M.: 1996, Comments on the origins of coronal mass ejections. Solar Phys. 169, 421. DOI. ADS.

    Article  ADS  Google Scholar 

  • Feng, S.W., Chen, Y., Li, B., Song, H.Q., Kong, X.L., Xia, L.D., Feng, X.S.: 2011, Streamer wave events observed in solar cycle 23. Solar Phys. 272(1), 119. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gopalswamy, N.: 2004, Interplanetary radio bursts. In: Gary, D.E., Keller, C.U. (eds.) Astrophysics and Space Science Library, Astrophysics and Space Science Library 314, 305. DOI. ADS.

    Chapter  Google Scholar 

  • Gopalswamy, N.: 2016, History and development of coronal mass ejections as a key player in solar terrestrial relationship. Geosci. Lett. 3, 8. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Mäkelä, P., Yashiro, S.: 2019, A catalog of type II radio bursts observed by Wind/WAVES and their statistical properties. Sun Geosph. 14, 111. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Lara, A., Lepping, R.P., Kaiser, M.L., Berdichevsky, D., St. Cyr, O.C.: 2000, Interplanetary acceleration of coronal mass ejections. Geophys. Res. Lett. 27, 145. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Yashiro, S., Kaiser, M.L., Howard, R.A., Bougeret, J.-L.: 2001, Characteristics of coronal mass ejections associated with long-wavelength type II radio bursts. J. Geophys. Res. 106(A12), 29219. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Aguilar-Rodriguez, E., Yashiro, S., Nunes, S., Kaiser, M.L., Howard, R.A.: 2005, Type II radio bursts and energetic solar eruptions. J. Geophys. Res. 110, A12S07. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Yashiro, S., Xie, H., Akiyama, S., Aguilar-Rodriguez, E., Kaiser, M.L., Howard, R.A., Bougeret, J.-L.: 2008, Radio-quiet fast and wide coronal mass ejections. Astrophys. J. 674, 560. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Thompson, W.T., Davila, J.M., Kaiser, M.L., Yashiro, S., Mäkelä, P., Michalek, G., Bougeret, J.-L., Howard, R.A.: 2009, Relation between type II bursts and CMEs inferred from STEREO observations. Solar Phys. 259(1 – 2), 227. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Mäkelä, P., Akiyama, S., Yashiro, S., Xie, H., MacDowall, R.J., Kaiser, M.L.: 2012, Radio-loud CMEs from the disk center lacking shocks at 1 AU. J. Geophys. Res. 117(A8), A08106. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Xie, H., Mäkelä, P., Yashiro, S., Akiyama, S., Uddin, W., Srivastava, A.K., Joshi, N.C., Chandra, R., Manoharan, P.K., Mahalakshmi, K., Dwivedi, V.C., Jain, R., Awasthi, A.K., Nitta, N.V., Aschwanden, M.J., Choudhary, D.P.: 2013a, Height of shock formation in the solar corona inferred from observations of type II radio bursts and coronal mass ejections. Adv. Space Res. 51(11), 1981. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Mäkelä, P., Xie, H., Yashiro, S.: 2013b, Testing the empirical shock arrival model using quadrature observations. Space Weather 11, 661. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Akiyama, S., Yashiro, S., Xie, H., Mäkelä, P., Michalek, G.: 2014, Anomalous expansion of coronal mass ejections during solar cycle 24 and its space weather implications. Geophys. Res. Lett. 41, 2673. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gosling, J.T.: 1993, The solar flare myth. J. Geophys. Res. 98, 18937. DOI. ADS.

    Article  ADS  Google Scholar 

  • Haurwitz, M.W., Yoshida, S., Akasofu, S.-I.: 1965, Interplanetary magnetic field asymmetries and their effects on polar cap absorption events and forbush decreases. J. Geophys. Res. 70, 2977. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hundhausen, A.J.: 1993, Sizes and locations of coronal mass ejections - SMM observations from 1980 and 1984 – 1989. J. Geophys. Res. 98, 13. DOI. ADS.

    Article  Google Scholar 

  • Jang, S., Moon, Y.-J., Kim, R.-S., Lee, H., Cho, K.-S.: 2016, Comparison between 2D and 3D parameters of 306 front-side halo CMEs from 2009 to 2013. Astrophys. J. 821, 95. DOI. ADS.

    Article  ADS  Google Scholar 

  • Joshi, B., Kushwaha, U., Veronig, A.M., Cho, K.-S.: 2016, Pre-flare coronal jet and evolutionary phases of a solar eruptive prominence associated with the M1.8 flare: SDO and RHESSI observations. Astrophys. J. 832, 130. DOI. ADS.

    Article  ADS  Google Scholar 

  • Joshi, B., Kushwaha, U., Veronig, A.M., Dhara, S.K., Shanmugaraju, A., Moon, Y.-J.: 2017, Formation and eruption of a flux rope from the sigmoid active region NOAA 11719 and associated M6.5 flare: a multi-wavelength study. Astrophys. J. 834, 42. DOI. ADS.

    Article  ADS  Google Scholar 

  • Joshi, B., Syed Ibrahim, M., Shanmugaraju, A., Chakrabarty, D.: 2018, A major geoeffective CME from NOAA 12371: initiation, CME-CME interactions, and interplanetary consequences. Solar Phys. 293, 107. DOI. ADS.

    Article  ADS  Google Scholar 

  • Knock, S.A., Cairns, I.H., Robinson, P.A., Kuncic, Z.: 2001, Theory of type II radio emission from the foreshock of an interplanetary shock. J. Geophys. Res. 106, 25041. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kong, X., Chen, Y., Guo, F., Feng, S., Wang, B., Du, G., Li, G.: 2015, The possible role of coronal streamers as magnetically closed structures in shock-induced energetic electrons and metric type II radio bursts. Astrophys. J. 798, 81. DOI. ADS.

    Article  ADS  Google Scholar 

  • Leblanc, Y., Dulk, G.A., Bougeret, J.-L.: 1998, Tracing the electron density from the corona to 1 au. Solar Phys. 183(1), 165. DOI. ADS.

    Article  ADS  Google Scholar 

  • Leblanc, Y., Dulk, G.A., Vourlidas, A., Bougeret, J.-L.: 2001, Tracing shock waves from the corona to 1 AU: type II radio emission and relationship with CMEs. J. Geophys. Res. 106(A11), 25301. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., Hurlburt, N.E., Katz, N.L., Kushner, G.D., Levay, M., Lindgren, R.W., Mathur, D.P., McFeaters, E.L., Mitchell, S., Rehse, R.A., Schrijver, C.J., Springer, L.A., Stern, R.A., Tarbell, T.D., Wuelser, J.-P., Wolfson, C.J., Yanari, C., Bookbinder, J.A., Cheimets, P.N., Caldwell, D., Deluca, E.E., Gates, R., Golub, L., Park, S., Podgorski, W.A., Bush, R.I., Scherrer, P.H., Gummin, M.A., Smith, P., Auker, G., Jerram, P., Pool, P., Soufli, R., Windt, D.L., Beardsley, S., Clapp, M., Lang, J., Waltham, N.: 2012, The atmospheric imaging assembly (AIA) on the solar dynamics observatory (SDO). Solar Phys. 275, 17. DOI. ADS.

    Article  ADS  Google Scholar 

  • Magara, T., Chen, P., Shibata, K., Yokoyama, T.: 2000, A unified model of coronal mass ejection-related type II radio bursts. Astrophys. J. Lett. 538, L175. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mäkelä, P., Gopalswamy, N., Akiyama, S., Xie, H., Yashiro, S.: 2011, Energetic storm particle events in coronal mass ejection-driven shocks. J. Geophys. Res. 116(A8), A08101. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mann, G., Klassen, A.: 2005, Electron beams generated by shock waves in the solar corona. Astron. Astrophys. 441, 319. DOI. ADS.

    Article  ADS  Google Scholar 

  • Manoharan, P.K.: 2006, Evolution of coronal mass ejections in the inner heliosphere: a study using white-light and scintillation images. Solar Phys. 235, 345. DOI. ADS.

    Article  ADS  Google Scholar 

  • Manoharan, P.K., Gopalswamy, N., Yashiro, S., Lara, A., Michalek, G., Howard, R.A.: 2004, Influence of coronal mass ejection interaction on propagation of interplanetary shocks. J. Geophys. Res. 109, A06109. DOI. ADS.

    Article  ADS  Google Scholar 

  • Michalek, G., Gopalswamy, N., Xie, H.: 2007, Width of radio-loud and radio-quiet CMEs. Solar Phys. 246(2), 409. DOI. ADS.

    Article  ADS  Google Scholar 

  • Nelson, G.J., Melrose, D.B.: 1985, Type II bursts. In: McLean, D.J., Labrum, N.R. (eds.) Solar Radiophysics: Studies of Emission from the Sun at Metre Wavelengths, 333. ADS.

    Google Scholar 

  • Payne-Scott, R., Yabsley, D.E., Bolton, J.G.: 1947, Relative times of arrival of bursts of solar noise on different radio frequencies. Nature 160, 256. DOI. ADS.

    Article  ADS  Google Scholar 

  • Prakash, O., Umapathy, S., Shanmugaraju, A., Vasanth, V.: 2012, Kinematics and flare properties of radio-loud CMEs. Solar Phys. 281, 765. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ramesh, R., Kathiravan, C., Kartha, S.S., Gopalswamy, N.: 2010, Radioheliograph observations of metric type II bursts and the kinematics of coronal mass ejections. Astrophys. J. 712, 188. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ramesh, R., Lakshmi, M.A., Kathiravan, C., Gopalswamy, N., Umapathy, S.: 2012, The location of solar metric type II radio bursts with respect to the associated coronal mass ejections. Astrophys. J. 752, 107. DOI. ADS.

    Article  ADS  Google Scholar 

  • Shanmugaraju, A., Prasanna Subramanian, S., Vrsnak, B., Ibrahim, M.S.: 2014, Interaction between two CMEs during 14 - 15 February 2011 and their unusual radio signature. Solar Phys. 289(12), 4621. DOI. ADS.

    Article  ADS  Google Scholar 

  • Shanmugaraju, A., Bendict Lawrance, M., Moon, Y.J., Lee, J.-O., Suresh, K.: 2017, Heights of coronal mass ejections and shocks inferred from metric and DH type II radio bursts. Solar Phys. 292(9), 136. DOI. ADS.

    Article  ADS  Google Scholar 

  • Sheeley, N.R. Jr., Howard, R.A., Michels, D.J., Robinson, R.D., Koomen, M.J., Stewart, R.T.: 1984, Associations between coronal mass ejections and metric type II bursts. Astrophys. J. 279, 839. DOI. ADS.

    Article  ADS  Google Scholar 

  • Sheeley, N.R., Hakala, W.N., Wang, Y.-M.: 2000, Detection of coronal mass ejection associated shock waves in the outer corona. J. Geophys. Res. 105(A3), 5081. DOI. ADS.

    Article  ADS  Google Scholar 

  • Shen, C., Liao, C., Wang, Y., Ye, P., Wang, S.: 2013, Source region of the decameter-hectometric type II radio burst: shock-streamer interaction region. Solar Phys. 282(2), 543. DOI. ADS.

    Article  ADS  Google Scholar 

  • Suresh, K., Shanmugaraju, A.: 2015, Investigation on radio-quiet and radio-loud fast CMEs and their associated flares during solar cycles 23 and 24. Solar Phys. 290, 875. DOI. ADS.

    Article  ADS  Google Scholar 

  • Syed Ibrahim, M., Manoharan, P.K., Shanmugaraju, A.: 2017, Propagation of coronal mass ejections observed during the rising phase of solar cycle 24. Solar Phys. 292, 133. DOI. ADS.

    Article  ADS  Google Scholar 

  • Syed Ibrahim, I., Uddin, W., Joshi, B., Chandra, R., Awasthi, A.K.: 2021, Investigation of two coronal mass ejections from circular ribbon source region:Origin, Sun-Earth propagation and Geoeffectiveness. Res. Astron. Astrophys. 21(12), 318. DOI. ADS.

    Article  ADS  Google Scholar 

  • Uchida, Y.: 1960, On the exciters of type II and type III solar radio bursts. Publ. Astron. Soc. Japan 12, 376. ADS.

    ADS  Google Scholar 

  • Umuhire, A.C., Gopalswamy, N., Uwamahoro, J., Akiyama, S., Yashiro, S., Mäkelä, P.: 2021, Properties of high-frequency type II radio bursts and their relation to the associated coronal mass ejections. Solar Phys. 296(1), 27. DOI. ADS.

    Article  ADS  Google Scholar 

  • Vršnak, B.: 2008, Processes and mechanisms governing the initiation and propagation of CMEs. Ann. Geophys. 26, 3089. DOI. ADS.

    Article  ADS  Google Scholar 

  • Vršnak, B., Žic, T., Vrbanec, D., Temmer, M., Rollett, T., Möstl, C., Veronig, A., Čalogović, J., Dumbović, M., Lulić, S., Moon, Y.-J., Shanmugaraju, A.: 2013, Propagation of interplanetary coronal mass ejections: the drag-based model. Solar Phys. 285, 295. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wagner, W.J., MacQueen, R.M.: 1983, The excitation of type II radio bursts in the corona. Astron. Astrophys. 120, 136. ADS.

    ADS  Google Scholar 

  • Wild, J.P., McCready, L.L.: 1950, Observations of the spectrum of high-intensity solar radiation at metre wavelengths. I. The apparatus and spectral types of solar burst observed. Aust. J. Sci. Res., Ser. A, Phys. Sci. 3, 387. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wild, J.P., Murray, J.D., Rowe, W.C.: 1953, Evidence of harmonics in the spectrum of a solar radio outburst. Nature 172(4377), 533. DOI. ADS.

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We thank the Solar Geophysical Data team for their open data policy. The CME catalog we have used is generated and maintained by the Center for Solar Physics and Space Weather, The Catholic University of America in cooperation with the Naval Research Laboratory and NASA. SOHO is a project of international cooperation between ESA and NASA. Our sincere thanks to Wind/WAVES team. M. S would like to thank Prof. R. Ramesh, Indian Institute of Astrophysics. We thank Prof. Nat. Gopalswamy, NASA and Prof. Bhuwan Joshi, Udaipur Solar Observatory, PRL for the great support to us. A. S would like to acknowledge the DST-SERB major research project grant F. No. CRG:2021/007496.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Syed Ibrahim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Syed Ibrahim, M., Ebenezer, E. & Shanmugaraju, A. Comparison Between Radio Loud and Radio Quiet Fast CMEs: A Reason for Radio Quietness. Sol Phys 298, 59 (2023). https://doi.org/10.1007/s11207-023-02151-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-023-02151-4

Keywords

Navigation