Skip to main content
Log in

Nonlinear Interaction of a 3D Kinetic Alfvén Wave with a Null Point and Turbulence Generation in the Solar Corona

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

In the present paper, we have studied nonlinear kinetic Alfvén waves (KAWs) in the vicinity of a null point. We have considered the nonlinearity due to ponderomotive effects associated with KAWs in the solar corona. A 3D model equation representing the dynamics of KAWs is developed in this null point scenario. Using numerical methods, we have solved the model equation for solar coronal parameters. The pseudospectral method and the finite difference method have been applied to tackle spatial integration and temporal evaluation, respectively. The outcome of the simulation demonstrates the formation of localized structures. With the evolution of time, these localized structures become more chaotic. Chaotic (turbulent) structures can efficiently transfer energy. The power spectrum of these turbulent structures shows the Kolmogorov spectral index of nearly \(-5/3\) in the inertial range followed by a steeper spectrum of nearly −3.3 (in the range of −2 to −4). These structures also lead to the generation of a current sheet. To understand the physics of our model, we have also done a semi-analytical study for our model equation. Semi-analytical calculations reveal that the current sheet structures have scale sizes of the order of the ion gyro-radius. The relevance of this investigation to the current observations by Parker Solar Probe has also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Akhmanov, S.A., Sukhorukov, A.P., Khokhlov, R.V.: 1968, Self-focusing and diffraction of light in a nonlinear medium. Sov. Phys. Usp. 10, 609.

    Article  ADS  Google Scholar 

  • Bian, N., Browning, P.: 2008, Particle acceleration in a model of a turbulent reconnecting plasma: a fractional diffusion approach. Astrophys. J. 687, L111.

    Article  ADS  Google Scholar 

  • Biermann, L.: 1946, The meaning of chromospheric turbulence and the UV excess of the Sun. Naturwischenschaften 33, 118.

    Article  ADS  Google Scholar 

  • Biskamp, D., Welter, H.: 1989, Dynamics of decaying two-dimensional magnetohydrodynamic turbulence. Phys. Fluids, B Plasma Phys. 1, 1964. DOI.

    Article  Google Scholar 

  • Brown, D.S., Priest, E.R.: 2001, The topological behaviour of 3D null points in the Sun’s corona. Astron. Astrophys. 367, 339. DOI.

    Article  ADS  Google Scholar 

  • Carbone, V., Veltri, P., Mangeney, A.: 1990, Coherent structure formation and magnetic field line reconnection in magnetohydrodynamic turbulence. Phys. Fluids A, Fluid Dyn. 2, 1487.

    Article  MATH  ADS  Google Scholar 

  • Champeaux, S., Passot, T., Sulem, P.L.: 1997, Alfven wave filamentation. J. Plasma Phys. 58, 665. DOI.

    Article  MATH  ADS  Google Scholar 

  • Close, R.M., Parnell, C.E., Priest, E.R.: 2004, Separators in 3D quiet-sun magnetic fields. Solar Phys. 225, 21. DOI.

    Article  ADS  Google Scholar 

  • Dahlburg, R., Einaudi, G., Rappazzo, A., Velli, M.: 2012, Turbulent coronal heating mechanisms: coupling of dynamics and thermodynamics. Astron. Astrophys. 544, L20.

    Article  ADS  Google Scholar 

  • Dahlburg, R., Einaudi, G., Taylor, B., Ugarte-Urra, I., Warren, H., Rappazzo, A., Velli, M.: 2016, Observational signatures of coronal loop heating and cooling driven by footpoint shuffling. Astrophys. J. 817, 47.

    Article  ADS  Google Scholar 

  • Daiffallah, K.: 2022, Electron acceleration from the interaction of three crossed parallel Alfvén waves. J. Plasma Phys. 88.

  • Dungey, J.W.: 1958, 15. The neutral point discharge theory of solar flares. A reply to Cowling’s criticism. Symp. - Int. Astron. Union 6, 135. DOI.

    Article  Google Scholar 

  • Einaudi, G., Velli, M., Politano, H., Pouquet, A.: 1996, Energy release in a turbulent corona. Astrophys. J. 457, L113.

    Article  ADS  Google Scholar 

  • Galsgaard, K., Nordlund, Å.: 1997, Heating and activity of the solar corona: 3. Dynamics of a low beta plasma with three-dimensional null points. J. Geophys. Res. 102, 231. DOI.

    Article  ADS  Google Scholar 

  • Gekelman, W.: 1999, Review of laboratory experiments on Alfvén waves and their relationship to space observations. J. Geophys. Res. 104, 14417.

    Article  ADS  Google Scholar 

  • Génot, V., Louarn, P., Le Quéau, D.: 1999, A study of the propagation of Alfvén waves in the auroral density cavities. J. Geophys. Res. 104, 22649.

    Article  ADS  Google Scholar 

  • Heyvaerts, J., Priest, E.R.: 1983, Coronal heating by phase-mixed shear Alfvén waves. Astron. Astrophys. 117, 220.

    MATH  ADS  Google Scholar 

  • Hollweg, J.V.: 1978, Alfvén waves in the solar atmosphere. Solar Phys. 56, 305.

    Article  ADS  Google Scholar 

  • Huang, S.Y., Xu, S.B., Zhang, J., Sahraoui, F., Andrés, N., He, J.S., Yuan, Z.G., Deng, X.H., Jiang, K., Wei, Y.Y., Xiong, Q.Y., Wang, Z., Yu, L., Lin, R.T.: 2022, Anisotropy of magnetic field spectra at kinetic scales of solar wind turbulence as revealed by the Parker solar probe in the inner heliosphere. Astrophys. J. 929, L6. DOI.

    Article  ADS  Google Scholar 

  • Ionson, J.A.: 1978, Resonant absorption of Alfvénic surface waves and the heating of solar coronal loops. Astrophys. J. 226, 650.

    Article  ADS  Google Scholar 

  • Longcope, D.W., Parnell, C.E.: 2009, The number of magnetic null points in the quiet sun corona. Solar Phys. 254, 51. DOI.

    Article  ADS  Google Scholar 

  • Malara, F., Nigro, G., Valentini, F., Sorriso-Valvo, L.: 2019, Electron heating by kinetic Alfvén waves in coronal loop turbulence. Astrophys. J. 871, 66.

    Article  ADS  Google Scholar 

  • Matthaeus, W., Lamkin, S.L.: 1986, Turbulent magnetic reconnection. Phys. Fluids 29, 2513.

    Article  ADS  Google Scholar 

  • Matthaeus, W.H., Goldstein, M.L., Roberts, D.A.: 1990, Evidence for the presence of quasi-two-dimensional nearly incompressible fluctuations in the solar wind. J. Geophys. Res. 95, 20673.

    Article  ADS  Google Scholar 

  • McClymont, A., Craig, I.J.: 1996, Dynamical finite-amplitude magnetic reconnection at an X-type neutral point.

  • McLaughlin, J.A., Hood, A.W.: 2004, MHD wave propagation in the neighbourhood of a two-dimensional null point. Astron. Astrophys. 420, 1129. DOI.

    Article  ADS  Google Scholar 

  • McLaughlin, J.A., Hood, A.W.: 2005, MHD wave propagation in the neighbourhood of two null points. Astron. Astrophys. 435, 313. DOI.

    Article  ADS  Google Scholar 

  • Mottez, F.: 2012, Non-propagating electric and density structures formed through non-linear interaction of Alfvén waves. Ann. Geophys. 30, 81.

    Article  ADS  Google Scholar 

  • Mottez, F.: 2015, Plasma acceleration by the interaction of parallel propagating Alfvén waves. J. Plasma Phys. 81.

  • Ofman, L.: 2010, Hybrid model of inhomogeneous solar wind plasma heating by Alfvén wave spectrum: Parametric studies. J. Geophys. Res. 115.

  • Oughton, S., Priest, E.R., Matthaeus, W.H.: 1994, The influence of a mean magnetic field on three-dimensional magnetohydrodynamic turbulence. J. Fluid Mech. 280, 95.

    Article  MATH  ADS  Google Scholar 

  • Pontin, D.I., Galsgaard, K.: 2007, Current amplification and magnetic reconnection at a three-dimensional null point: physical characteristics. J. Geophys. Res. 112, A03103. DOI.

    Article  ADS  Google Scholar 

  • Rickard, G., Titov, V.: 1996, Current accumulation at a three-dimensional magnetic null. Astrophys. J. 472, 840.

    Article  ADS  Google Scholar 

  • Roumeliotis, G., Moore, R.L.: 1993, A linear solution for magnetic reconnection driven by converging or diverging footpoint motions. Astrophys. J. 416, 386.

    Article  ADS  Google Scholar 

  • Schwarzschild, M.: 1948, On noise arising from the solar granulation. Astrophys. J. 107, 1.

    Article  ADS  Google Scholar 

  • Sharma, R., Kumar, S.: 2010, Landau damped kinetic Alfvén waves and coronal heating. J. Plasma Phys. 76, 239.

    Article  ADS  Google Scholar 

  • Shebalin, J.V., Matthaeus, W.H., Montgomery, D.: 1983, Anisotropy in MHD turbulence due to a mean magnetic field. J. Plasma Phys. 29, 525.

    Article  ADS  Google Scholar 

  • Shibata, K., Magara, T.: 2011, Solar Flares: Magnetohydrodynamic Processes. Living Rev. Solar Phys. 8. DOI. http://link.Springer.com/10.12942/lrsp-2011-6.

  • Stasiewicz, K., Bellan, P., Chaston, C., Kletzing, C., Lysak, R., Maggs, J., Pokhotelov, O., Seyler, C., Shukla, P., Stenflo, L., et al.: 2000, Small scale Alfvénic structure in the aurora. Space Sci. Rev. 92, 423.

    Article  ADS  Google Scholar 

  • Stein, R.F., Leibacher, J.: 1974, Waves in the Solar Atmosphere. Annu. Rev. Astron. Astrophys. 12, 407. DOI.

    Article  ADS  Google Scholar 

  • Strauss, H.R.: 1976, Nonlinear, three-dimensional magnetohydrodynamics of noncircular tokamaks. Phys. Fluids 19, 134.

    Article  ADS  Google Scholar 

  • Sweet, P.A.: 1958, 14. The Neutral Point Theory of Solar Flares. Symp. - Int. Astron. Union 6, 123. DOI.

    Book  Google Scholar 

  • Thurgood, J.O., McLaughlin, J.A.: 2013, Nonlinear Alfvén wave dynamics at a 2D magnetic null point: ponderomotive force. Astron. Astrophys. 555, A86. DOI.

    Article  ADS  Google Scholar 

  • Tsiklauri, D.: 2012, Three dimensional particle-in-cell simulation of particle acceleration by circularly polarised inertial Alfven waves in a transversely inhomogeneous plasma. Phys. Plasmas 19, 082903.

    Article  ADS  Google Scholar 

  • Tsiklauri, D., Haruki, T.: 2007, Magnetic reconnection during collisionless, stressed, X-point collapse using particle-in-cell simulation. Phys. Plasmas 14, 112905.

    Article  ADS  Google Scholar 

  • Tsiklauri, D., Haruki, T.: 2008, Physics of collisionless reconnection in a stressed X-point collapse. Phys. Plasmas 15, 102902.

    Article  ADS  Google Scholar 

  • Tsiklauri, D., Sakai, J.-I., Saito, S.: 2005, Particle-in-cell simulations of circularly polarised Alfvén wave phase mixing: a new mechanism for electron acceleration in collisionless plasmas. Astron. Astrophys. 435, 1105.

    Article  ADS  Google Scholar 

  • Van Ballegooijen, A., Asgari-Targhi, M., Cranmer, S., DeLuca, E.: 2011, Heating of the solar chromosphere and corona by Alfvén wave turbulence. Astrophys. J. 736, 3.

    Article  ADS  Google Scholar 

  • Van Doorsselaere, T., Nakariakov, V.M., Verwichte, E.: 2008, Detection of waves in the solar corona: kink or Alfvén? Astrophys. J. 676, L73. DOI.

    Article  ADS  Google Scholar 

  • Vlahos, L., Isliker, H.: 2018, Particle acceleration and heating in a turbulent solar corona. Plasma Phys. Control. Fusion 61, 014020.

    Article  ADS  Google Scholar 

  • Wentzel, D.G.: 1974, Coronal heating by Alfven waves. Solar Phys. 39, 129. DOI.

    Article  ADS  Google Scholar 

  • Wu, D.J., Chao, J.K.: 2004, Recent progress in nonlinear kinetic Alfvén waves. Nonlinear Process. Geophys. 11, 631. DOI.

    Article  ADS  Google Scholar 

  • Yadav, N., Sharma, R.P.: 2014, Nonlinear interaction of 3D kinetic Alfvén waves and ion acoustic waves in solar wind plasmas. Solar Phys. 289, 1803. DOI.

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This research is supported by the Council for Scientific & Industrial Research (CSIR), New Delhi, India.

Author information

Authors and Affiliations

Authors

Contributions

Garima Patel wrote the main manuscript text and prepared Figures 1 – 4. All authors reviewed the manuscript.

Corresponding author

Correspondence to G. Patel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, G., Pathak, N., Uma, R. et al. Nonlinear Interaction of a 3D Kinetic Alfvén Wave with a Null Point and Turbulence Generation in the Solar Corona. Sol Phys 297, 149 (2022). https://doi.org/10.1007/s11207-022-02083-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-022-02083-5

Keywords

Navigation