Skip to main content
Log in

Differential Rotation of Solar Filaments Early Observed by the OGAUC in the Period 1929 – 1941

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

The solar filaments obtained from the daily Ca ii K3 observations at the Coimbra Astronomical Observatory, which is now called the Geophysical and Astronomical Observatory of the University of Coimbra (OGAUC), for the period 1929 – 1941 have been digitized and validated, and they are confirmed to be reliable for solar activity studies. We use these filament data to investigate the rotation and differential degree of the solar high chromosphere. The main results are as follows: (1) the rotation profile of filaments is somewhat steeper than the rotation profile for long-lived Hα filaments; (2) the high chromosphere filaments rotate faster than sunspots, the photosphere, and the medium-low chromosphere at middle-low latitudes; (3) solar filaments rotate at a higher rotation rate in the descending phase of the solar cycle than in the ascending phase, and their rotation velocities are relatively faster around the year of solar maximum. The possible explanation for the above results is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data Availability

The datasets used in this work are available from the Appendix A of this article DOI.

References

  • Adams, W.M., Tang, F.: 1977, Differential rotation of short-lived solar filaments. Solar Phys. 55(2), 499. DOI. ADS.

    Article  ADS  Google Scholar 

  • Altrock, R.C.: 1997, An ‘extended solar CYCLE’ as observed in fe XIV. Solar Phys. 170(2), 411. DOI. ADS.

    Article  ADS  Google Scholar 

  • Antia, H.M., Basu, S.: 2001, Temporal variations of the solar rotation rate at high latitudes. Astrophys. J. Lett. 559(1), L67. DOI. ADS.

    Article  ADS  Google Scholar 

  • Babcock, H.W.: 1961, The topology of the Sun’s magnetic field and the 22-YEAR cycle. Astrophys. J. 133, 572. DOI. ADS.

    Article  ADS  Google Scholar 

  • Balthasar, H., Woehl, H.: 1983, On the determination of heliographic positions and rotation velocities of sunspots - part two - systematic effects caused by the Wilson depression. Solar Phys. 88(1–2), 71. DOI. ADS.

    Article  ADS  Google Scholar 

  • Beck, J.G.: 2000, A comparison of differential rotation measurements - (invited review). Solar Phys. 191(1), 47. DOI. ADS.

    Article  ADS  Google Scholar 

  • Bertello, L., Pevtsov, A.A., Ulrich, R.K.: 2020, 70 years of chromospheric solar activity and dynamics. Astrophys. J. 897(2), 181. DOI. ADS.

    Article  ADS  Google Scholar 

  • Brajša, R., Ruždjak, D., Wöhl, H.: 2006, Temporal variations of the solar rotation determined by sunspot groups. Solar Phys. 237(2), 365. DOI. ADS.

    Article  ADS  Google Scholar 

  • Brajša, R., Vršnak, B., Ruždjak, V., Schroll, A., Pohjolainen, S., Urpo, S., Teräsranta, H.: 1991, Solar differential rotation determined by polar crown filaments. Solar Phys. 133(2), 195. DOI. ADS.

    Article  ADS  Google Scholar 

  • Brajša, R., Ruždjak, V., Vršnak, B., Wöhl, H., Pohjolainen, S., Urpo, S.: 1999, An estimate of microwave low-brightness-temperature regions’ heights obtained measuring their rotation velocity. Solar Phys. 184(2), 281. DOI. ADS.

    Article  ADS  Google Scholar 

  • Brajša, R., Ruždjak, V., Vršnak, B., Wöhl, H., Pohjolainen, S., Upro, S.: 2000, Statistical weights and selective height corrections in the determination of the solar rotation velocity. Solar Phys. 196(2), 279. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cameron, R.H., Dikpati, M., Brandenburg, A.: 2017, The global solar dynamo. Space Sci. Rev. 210(1–4), 367. DOI. ADS.

    Article  ADS  Google Scholar 

  • Carrasco, V.M.S., Vaquero, J.M., Trigo, R.M., Gallego, M.C.: 2018, A curious history of sunspot penumbrae: an update. Solar Phys. 293(7), 104. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chandra, S., Vats, H.O., Iyer, K.N.: 2010, Differential rotation measurement of soft X-ray corona. Mon. Not. Roy. Astron. Soc. 407(2), 1108. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chu, Z., Zhang, J., Nie, Q.X., Li, T.: 2010, The rotation rates of solar magnetic fields during Solar Cycles 21 – 23. Solar Phys. 264(1), 1. DOI. ADS.

    Article  ADS  Google Scholar 

  • Deng, L.H., Zhang, X.J., Deng, H., Mei, Y., Wang, F.: 2020, Systematic regularity of solar coronal rotation during the time interval 1939 – 2019. Mon. Not. Roy. Astron. Soc. 491(1), 848. DOI. ADS.

    Article  ADS  Google Scholar 

  • Dikpati, M., Gilman, P.A.: 2006, Simulating and predicting solar cycles using a flux-transport dynamo. Astrophys. J. 649(1), 498. DOI. ADS.

    Article  ADS  Google Scholar 

  • Durney, B.R.: 2000, The energy lost by differential rotation in the generation of the solar toroidal magnetic field. Solar Phys. 197(2), 215. DOI. ADS.

    Article  ADS  Google Scholar 

  • Fisher, R., Sime, D.G.: 1984, Rotational characteristics of the white-light solar corona 1965 – 1983. Astrophys. J. 287, 959. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gigolashvili, M.S., Japaridze, D.R., Kukhianidze, V.J.: 2013, Investigation of the differential rotation by H\(\alpha\) filaments and long-lived magnetic features for Solar Activity Cycles 20 and 21. Solar Phys. 282(1), 51. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gigolashvili, M.S., Japaridze, D.R., Pataraya, A.D., Zaqarashvili, T.V.: 1995, Propagation of a quasi bi-annual impulse close to the moment of the solar magnetic field polarity changing. Solar Phys. 156(2), 221. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gilman, P.A.: 1974, Solar rotation. Annu. Rev. Astron. Astrophys. 12, 47. DOI. ADS.

    Article  ADS  Google Scholar 

  • Glackin, D.L.: 1974, Differential rotation of solar filaments. Solar Phys. 36(1), 51. DOI. ADS.

    Article  ADS  Google Scholar 

  • Howard, R.: 1984, Solar rotation. Annu. Rev. Astron. Astrophys. 22, 131. DOI. ADS.

    Article  ADS  Google Scholar 

  • Howe, R.: 2009, Solar interior rotation and its variation. Living Rev. Solar Phys. 6(1), 1. DOI. ADS.

    Article  ADS  Google Scholar 

  • Japaridze, D.R., Chargeishvili, B.B.: 2016, Study of variations in solar differential rotation based on compact magnetic features and hydrogen H\(\alpha\) filaments. Astrophysics 59(3), 389. DOI. ADS.

    Article  ADS  Google Scholar 

  • Japaridze, D.R., Gigolashvili, M.S.: 1992, Investigation of the solar differential rotation by hydrogen filaments in 1976 – 1986. Solar Phys. 141(2), 267. DOI. ADS.

    Article  ADS  Google Scholar 

  • Javaraiah, J.: 2020, Long-term variations in solar differential rotation and sunspot activity, II: differential rotation around the maxima and minima of Solar Cycles 12 – 24. Solar Phys. 295(12), 170. DOI. ADS.

    Article  ADS  Google Scholar 

  • Labonte, B.J., Howard, R.: 1982, Torsional waves on the Sun and the activity cycle. Solar Phys. 75(1–2), 161. DOI. ADS.

    Article  ADS  Google Scholar 

  • Li, K.J., Feng, W.: 2019, Characteristics of solar wind rotation. Mon. Not. Roy. Astron. Soc. 489(3), 3427. DOI. ADS.

    Article  ADS  Google Scholar 

  • Li, K.J., Xu, J.C., Yin, Z.Q., Feng, W.: 2019, Why does the solar corona abnormally rotate faster than the photosphere? Astrophys. J. 875(2), 90. DOI. ADS.

    Article  ADS  Google Scholar 

  • Li, K.J., Xu, J.C., Xie, J.L., Feng, W.: 2020, Differential rotation of the chromosphere in the He I absorption line. Astrophys. J. Lett. 905(1), L11. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lourenço, A., Gafeira, R., Bonifácio, V., Barata, T., Fernandes, J., Silva, E.: 2021, Testing the accuracy of Coimbra astronomical observatory solar filament historical series (1929 – 1941). Solar Phys. 296(10), 155. DOI. ADS.

    Article  ADS  Google Scholar 

  • Luo, X.-Y., Peng, Y., Zheng, S., Zeng, S.-G., Deng, L.-H., Feng, Y.-L., Tao, J.-P.: 2021, Chinese sunspot drawings and their digitization – (IV) differential rotation profile determined from hand-drawing records. J. Astrophys. Astron. 42(2), 75. DOI. ADS.

    Article  ADS  Google Scholar 

  • Newton, H.W., Nunn, M.L.: 1951, The Sun’s rotation derived from sunspots 1934 – 1944 and additional results. Mon. Not. Roy. Astron. Soc. 111, 413. DOI. ADS.

    Article  ADS  Google Scholar 

  • Obridko, V.N., Shelting, B.D.: 2016, On the negative correlation between solar activity and solar rotation rate. Astron. Lett. 42(9), 631. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ossendrijver, M.: 2003, The solar dynamo. Astron. Astrophys. Rev. 11(4), 287. DOI. ADS.

    Article  ADS  Google Scholar 

  • Paterno, L.: 2010, The solar differential rotation: a historical view. Astrophys. Space Sci. 328(1–2), 269. DOI. ADS.

    Article  ADS  Google Scholar 

  • Rosa, D., Vrsnak, B., Bozic, H., Brajsa, R., Ruzdjak, V., Schroll, A., Wohl, H.: 1998, A method to determine the solar synodic rotation rate and the height of tracers. Solar Phys. 179(2), 237. DOI. ADS.

    Article  ADS  Google Scholar 

  • Scherrer, P.H., Wilcox, J.M.: 1980, Doppler observations of solar rotation. Astrophys. J. 239, L89. DOI. ADS.

    Article  ADS  Google Scholar 

  • Shi, X.J., Xie, J.L.: 2013, The rotation profile of solar magnetic fields between ±60° latitudes. Astrophys. J. Lett. 773(1), L6. DOI. ADS.

    Article  ADS  Google Scholar 

  • Skokić, I., Brajša, R., Roša, D., Hržina, D., Wöhl, H.: 2014, Validity of the relations between the synodic and sidereal rotation velocities of the Sun. Solar Phys. 289(5), 1471. DOI. ADS.

    Article  ADS  Google Scholar 

  • Snodgrass, H.B., Howard, R.: 1985, Torsional oscillations of the Sun. Science 228(4702), 945. DOI. ADS.

    Article  ADS  Google Scholar 

  • Stenflo, J.O.: 1989, Differential rotation of the sun’s magnetic field pattern. Astron. Astrophys. 210(1–2), 403. ADS.

    ADS  Google Scholar 

  • Vršnak, B., Rošd, A., Božić, H., Brajša, R., Ruždjak, V., Schroll, A., Wöhl, H.: 1999, Height of tracers and the correction of the measured solar synodic rotation rate: demonstration of the method. Solar Phys. 185(2), 207. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wilson, P.R., Altrocki, R.C., Harvey, K.L., Martin, S.F., Snodgrass, H.B.: 1988, The extended solar activity cycle. Nature 333(6175), 748. DOI. ADS.

    Article  ADS  Google Scholar 

  • Xiang, N.B., Ning, Z.J., Li, F.Y.: 2020, Temporal evolution of the rotation of the interplanetary magnetic field \(B_{x}, B_{y}\), and \(B_{z}\) components. Solar Phys. 896(1), 12. DOI. ADS.

    Article  Google Scholar 

  • Xiang, N.B., Qu, Z.N., Zhai, Q.: 2014, Periodicity of the solar full-disk magnetic fields. Astron. J. 148(1), 12. DOI. ADS.

    Article  ADS  Google Scholar 

  • Xie, J., Shi, X., Qu, Z.: 2018, North-South asymmetry of the rotation of the solar magnetic field. Astrophys. J. 855(2), 84. DOI. ADS.

    Article  ADS  Google Scholar 

  • Xie, J.L., Shi, X.J., Zhang, J.: 2017, Temporal variation of solar coronal rotation. Astrophys. J. 841(1), 42. DOI. ADS.

    Article  ADS  Google Scholar 

  • Xu, J.C., Gao, P.X., Shi, X.J.: 2020, On the rotation of the solar chromosphere. Astrophys. J. 902(1), 64. DOI. ADS.

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We thank the anonymous referee for careful reading of the manuscript and constructive comments, which improved its original version. This work is supported by the National Natural Science Foundation of China (11973085, 11903077, 11803086, 11703085, and 11633008), the Yunnan Ten-Thousand Talents Plan (the Yunling-Scholar Project), the national project for large scale scientific facilities (2019YFA0405001), the Yunnan Fundamental Research Project (202201AS070042), and the Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miao Wan.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, M., Li, K. Differential Rotation of Solar Filaments Early Observed by the OGAUC in the Period 1929 – 1941. Sol Phys 297, 126 (2022). https://doi.org/10.1007/s11207-022-02059-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-022-02059-5

Keywords

Navigation