Altschuler, M.D., Newkirk, G.: 1969, Magnetic fields and the structure of the solar corona. I: methods of calculating coronal fields. Solar Phys. 9(1), 131. DOI. ADS.
ADS
Article
Google Scholar
Antiochos, S.K., DeVore, C.R., Klimchuk, J.A.: 1999, A model for solar coronal mass ejections. Astrophys. J. 510(1), 485. DOI. ADS.
ADS
Article
Google Scholar
Berger, M.A., Field, G.B.: 1984, The topological properties of magnetic helicity. J. Fluid Mech. 147, 133. DOI. ADS.
ADS
MathSciNet
Article
Google Scholar
Bhowmik, P., Yeates, A.R.: 2021, Two classes of eruptive events during solar minimum. Solar Phys. 296(7), 109. DOI. ADS.
ADS
Article
Google Scholar
Bisi, M.M., Jackson, B.V., Hick, P.P., Buffington, A., Clover, J.M., Tokumaru, M., Fujiki, K.: 2010, Three-dimensional reconstructions and mass determination of the 2008 June 2 LASCO coronal mass ejection using STELab interplanetary scintillation observations. Astrophys. J. Lett. 715(2), L104. DOI. ADS.
ADS
Article
Google Scholar
Chen, P.F.: 2011, Coronal mass ejections: models and their observational basis. Living Rev. Solar Phys. 8(1), 1. DOI. ADS.
ADS
Article
Google Scholar
Craig, I.J.D., Sneyd, A.D.: 1986, A dynamic relaxation technique for determining the structure and stability of coronal magnetic fields. Astrophys. J. 311, 451. DOI. ADS.
ADS
Article
Google Scholar
D’Huys, E., Seaton, D.B., Poedts, S., Berghmans, D.: 2014, Observational characteristics of coronal mass ejections without low-coronal signatures. Astrophys. J. 795(1), 49. DOI. ADS.
ADS
Article
Google Scholar
Forbes, T.G., Linker, J.A., Chen, J., Cid, C., Kóta, J., Lee, M.A., Mann, G., Mikić, Z., Potgieter, M.S., Schmidt, J.M., Siscoe, G.L., Vainio, R., Antiochos, S.K., Riley, P.: 2006, CME theory and models. Space Sci. Rev. 123(1 – 3), 251. DOI. ADS.
ADS
Article
Google Scholar
Gilbert, H.R., Holzer, T.E., Burkepile, J.T., Hundhausen, A.J.: 2000, Active and eruptive prominences and their relationship to coronal mass ejections. Astrophys. J. 537(1), 503. DOI. ADS.
ADS
Article
Google Scholar
Gopalswamy, N., Shimojo, M., Lu, W., Yashiro, S., Shibasaki, K., Howard, R.A.: 2003, Prominence eruptions and coronal mass ejection: a statistical study using microwave observations. Astrophys. J. 586(1), 562. DOI. ADS.
ADS
Article
Google Scholar
Gopalswamy, N., Mikić, Z., Maia, D., Alexander, D., Cremades, H., Kaufmann, P., Tripathi, D., Wang, Y.-M.: 2006, The pre-CME Sun. Space Sci. Rev. 123(1 – 3), 303. DOI. ADS.
ADS
Article
Google Scholar
Green, L.M., Török, T., Vršnak, B., Manchester, W., Veronig, A.: 2018, The origin, early evolution and predictability of solar eruptions. Space Sci. Rev. 214(1), 46. DOI. ADS.
ADS
Article
Google Scholar
Guo, Y., Xia, C., Keppens, R.: 2016, Magneto-frictional modeling of coronal nonlinear force-free fields. II. Application to observations. Astrophys. J. 828(2), 83. DOI. ADS.
ADS
Article
Google Scholar
Higginson, A.K., Lynch, B.J.: 2018, Structured slow solar wind variability: streamer-blob flux ropes and torsional Alfvén waves. Astrophys. J. 859(1), 6. DOI. ADS.
ADS
Article
Google Scholar
Howard, T.A., Harrison, R.A.: 2013, Stealth coronal mass ejections: a perspective. Solar Phys. 285(1 – 2), 269. DOI. ADS.
ADS
Article
Google Scholar
Hudson, H.S., Cliver, E.W.: 2001, Observing coronal mass ejections without coronagraphs. J. Geophys. Res. 106(A11), 25199. DOI. ADS.
ADS
Article
Google Scholar
Kilpua, E.K.J., Mierla, M., Zhukov, A.N., Rodriguez, L., Vourlidas, A., Wood, B.: 2014, Solar sources of interplanetary coronal mass ejections during the Solar Cycle 23/24 minimum. Solar Phys. 289(10), 3773. DOI. ADS.
ADS
Article
Google Scholar
Kliem, B., Su, Y.N., van Ballegooijen, A.A., DeLuca, E.E.: 2013, Magnetohydrodynamic modeling of the solar eruption on 2010 April 8. Astrophys. J. 779(2), 129. DOI. ADS.
ADS
Article
Google Scholar
Klimchuk, J.A.: 2001, Theory of Coronal Mass Ejections. Washington DC American Geophysical Union Geophysical Monograph Series 125, 143. DOI. ADS.
Book
Google Scholar
Lamy, P.L., Floyd, O., Boclet, B., Wojak, J., Gilardy, H., Barlyaeva, T.: 2019, Coronal mass ejections over Solar Cycles 23 and 24. Space Sci. Rev. 215(5), 39. DOI. ADS.
ADS
Article
Google Scholar
Linker, J.A., Mikic, Z.: 1995, Disruption of a helmet streamer by photospheric shear. Astrophys. J. Lett. 438, L45. DOI. ADS.
ADS
Article
Google Scholar
Linker, J.A., Mikić, Z., Lionello, R., Riley, P., Amari, T., Odstrcil, D.: 2003, Flux cancellation and coronal mass ejections. Phys. Plasmas 10(5), 1971. DOI. ADS.
ADS
Article
Google Scholar
Lowder, C., Yeates, A.: 2017, Magnetic flux rope identification and characterization from observationally driven solar coronal models. Astrophys. J. 846(2), 106. DOI. ADS.
ADS
Article
Google Scholar
Lynch, B.J., Li, Y., Thernisien, A.F.R., Robbrecht, E., Fisher, G.H., Luhmann, J.G., Vourlidas, A.: 2010, Sun to 1 AU propagation and evolution of a slow streamer-blowout coronal mass ejection. J. Geophys. Res. 115(A7), A07106. DOI. ADS.
ADS
Article
Google Scholar
Lynch, B.J., Masson, S., Li, Y., DeVore, C.R., Luhmann, J.G., Antiochos, S.K., Fisher, G.H.: 2016, A model for stealth coronal mass ejections. J. Geophys. Res. 121(11), 10,677. DOI. ADS.
Article
Google Scholar
Ma, S., Attrill, G.D.R., Golub, L., Lin, J.: 2010, Statistical study of coronal mass ejections with and without distinct low coronal signatures. Astrophys. J. 722(1), 289. DOI. ADS.
ADS
Article
Google Scholar
Mackay, D.H., van Ballegooijen, A.A.: 2006, Models of the large-scale corona. I. Formation, evolution, and liftoff of magnetic flux ropes. Astrophys. J. 641(1), 577. DOI. ADS.
ADS
Article
Google Scholar
Mackay, D.H., Yeates, A.R.: 2012, The Sun’s global photospheric and coronal magnetic fields: observations and models. Living Rev. Solar Phys. 9(1), 6. DOI. ADS.
ADS
Article
Google Scholar
Mackay, D.H., Karpen, J.T., Ballester, J.L., Schmieder, B., Aulanier, G.: 2010, Physics of solar prominences: II – Magnetic structure and dynamics. Space Sci. Rev. 151(4), 333. DOI. ADS.
ADS
Article
Google Scholar
Mikic, Z., Linker, J.A.: 1994, Disruption of coronal magnetic field arcades. Astrophys. J. 430, 898. DOI. ADS.
ADS
Article
Google Scholar
Möstl, C., Farrugia, C.J., Temmer, M., Miklenic, C., Veronig, A.M., Galvin, A.B., Leitner, M., Biernat, H.K.: 2009, Linking remote imagery of a coronal mass ejection to its in situ signatures at 1 AU. Astrophys. J. Lett. 705(2), L180. DOI. ADS.
ADS
Article
Google Scholar
Nieves-Chinchilla, T., Gómez-Herrero, R., Viñas, A.F., Malandraki, O., Dresing, N., Hidalgo, M.A., Opitz, A., Sauvaud, J.-A., Lavraud, B., Davila, J.M.: 2011, Analysis and study of the in situ observation of the June 1st 2008 CME by STEREO. J. Atmos. Solar-Terr. Phys. 73(11-12), 1348. DOI. ADS.
ADS
Article
Google Scholar
Nitta, N.V., Mulligan, T., Kilpua, E.K.J., Lynch, B.J., Mierla, M., O’Kane, J., Pagano, P., Palmerio, E., Pomoell, J., Richardson, I.G., Rodriguez, L., Rouillard, A.P., Sinha, S., Srivastava, N., Talpeanu, D.-C., Yardley, S.L., Zhukov, A.N.: 2021, Understanding the origins of problem geomagnetic storms associated with “stealth” coronal mass ejections. Space Sci. Rev. 217(8), 82. DOI. ADS.
ADS
Article
Google Scholar
Pagano, P., Mackay, D.H., Poedts, S.: 2014, Simulating AIA observations of a flux rope ejection. Astron. Astrophys. 568, A120. DOI. ADS.
ADS
Article
Google Scholar
Rice, O.E.K., Yeates, A.R.: 2021, Global coronal equilibria with solar wind outflow. Astrophys. J. 923(1), 57. DOI. ADS.
ADS
Article
Google Scholar
Richardson, I.G., Cane, H.V.: 2010, Near-Earth interplanetary coronal mass ejections during Solar Cycle 23 (1996 – 2009): catalog and summary of properties. Solar Phys. 264(1), 189. DOI. ADS.
ADS
Article
Google Scholar
Robbrecht, E., Patsourakos, S., Vourlidas, A.: 2009, No trace left behind: STEREO observation of a coronal mass ejection without low coronal signatures. Astrophys. J. 701(1), 283. DOI. ADS.
ADS
Article
Google Scholar
Rollett, T., Möstl, C., Temmer, M., Veronig, A.M., Farrugia, C.J., Biernat, H.K.: 2012, Constraining the kinematics of coronal mass ejections in the inner heliosphere with in-situ signatures. Solar Phys. 276(1 – 2), 293. DOI. ADS.
ADS
Article
Google Scholar
Schatten, K.H., Wilcox, J.M., Ness, N.F.: 1969, A model of interplanetary and coronal magnetic fields. Solar Phys. 6(3), 442. DOI. ADS.
ADS
Article
Google Scholar
Schmieder, B., Démoulin, P., Aulanier, G.: 2013, Solar filament eruptions and their physical role in triggering coronal mass ejections. Adv. Space Res. 51(11), 1967. DOI. ADS.
ADS
Article
Google Scholar
Schrijver, C.J., Kauristie, K., Aylward, A.D., Denardini, C.M., Gibson, S.E., Glover, A., Gopalswamy, N., Grande, M., Hapgood, M., Heynderickx, D., Jakowski, N., Kalegaev, V.V., Lapenta, G., Linker, J.A., Liu, S., Mandrini, C.H., Mann, I.R., Nagatsuma, T., Nandy, D., Obara, T., Paul O’Brien, T., Onsager, T., Opgenoorth, H.J., Terkildsen, M., Valladares, C.E., Vilmer, N.: 2015, Understanding space weather to shield society: a global road map for 2015 – 2025 commissioned by COSPAR and ILWS. Adv. Space Res. 55(12), 2745. DOI. ADS.
ADS
Article
Google Scholar
Sheeley, N.R. Jr., Warren, H.P., Wang, Y.-M.: 2007, A streamer ejection with reconnection close to the Sun. Astrophys. J. 671(1), 926. DOI. ADS.
ADS
Article
Google Scholar
Sheeley, N.R. Jr., Lee, D.D.-H., Casto, K.P., Wang, Y.-M., Rich, N.B.: 2009, The structure of streamer blobs. Astrophys. J. 694(2), 1471. DOI. ADS.
ADS
Article
Google Scholar
Snodgrass, H.B.: 1983, Magnetic rotation of the solar photosphere. Astrophys. J. 270, 288. DOI. ADS.
ADS
Article
Google Scholar
Temmer, M.: 2021, Space weather: the solar perspective. Living Rev. Solar Phys. 18(1), 4. DOI. ADS.
ADS
Article
Google Scholar
van Ballegooijen, A.A., Cranmer, S.R.: 2008, Hyperdiffusion as a mechanism for solar coronal heating. Astrophys. J. 682(1), 644. DOI. ADS.
ADS
Article
Google Scholar
van Ballegooijen, A.A., Priest, E.R., Mackay, D.H.: 2000, Mean field model for the formation of filament channels on the Sun. Astrophys. J. 539(2), 983. DOI. ADS.
ADS
Article
Google Scholar
Vourlidas, A., Webb, D.F.: 2018, Streamer-blowout coronal mass ejections: their properties and relation to the coronal magnetic field structure. Astrophys. J. 861(2), 103. DOI. ADS.
ADS
Article
Google Scholar
Vourlidas, A., Howard, R.A., Esfandiari, E., Patsourakos, S., Yashiro, S., Michalek, G.: 2011, Erratum: “Comprehensive analysis of coronal mass ejection mass and energy properties over a full solar cycle”. Astrophys. J. 730(1), 59. DOI. ADS.
ADS
Article
Google Scholar
Vourlidas, A., Lynch, B.J., Howard, R.A., Li, Y.: 2013, How many CMEs have flux ropes? Deciphering the signatures of shocks, flux ropes, and prominences in coronagraph observations of CMEs. Solar Phys. 284(1), 179. DOI. ADS.
ADS
Article
Google Scholar
Webb, D.F.: 2015, Eruptive prominences and their association with coronal mass ejections. In: Vial, J.-C., Engvold, O. (eds.) Solar Prominences, Astrophysics and Space Science Library 415, 411. DOI. ADS.
Chapter
Google Scholar
Webb, D.F., Howard, T.A.: 2012, Coronal mass ejections: observations. Living Rev. Solar Phys. 9(1), 3. DOI. ADS.
ADS
Article
Google Scholar
Whitbread, T., Yeates, A.R., Muñoz-Jaramillo, A., Petrie, G.J.D.: 2017, Parameter optimization for surface flux transport models. Astron. Astrophys. 607, A76. DOI. ADS.
ADS
Article
Google Scholar
Wood, B.E., Howard, R.A., Socker, D.G.: 2010, Reconstructing the morphology of an evolving coronal mass ejection. Astrophys. J. 715(2), 1524. DOI. ADS.
ADS
Article
Google Scholar
Yang, W.H., Sturrock, P.A., Antiochos, S.K.: 1986, Force-free magnetic fields: the magneto-frictional method. Astrophys. J. 309, 383. DOI. ADS.
ADS
Article
Google Scholar
Yardley, S.L., Mackay, D.H., Green, L.M.: 2018, Simulating the coronal evolution of AR 11437 using SDO/HMI magnetograms. Astrophys. J. 852(2), 82. DOI. ADS.
ADS
Article
Google Scholar
Yardley, S.L., Pagano, P., Mackay, D.H., Upton, L.A.: 2021, Determining the source and eruption dynamics of a stealth CME using NLFFF modelling and MHD simulations. Astron. Astrophys. 652, A160. DOI. ADS.
ADS
Article
Google Scholar
Yeates, A.R.: 2014, Coronal magnetic field evolution from 1996 to 2012: continuous non-potential simulations. Solar Phys. 289(2), 631. DOI. ADS.
ADS
Article
Google Scholar
Yeates, A.: 2018, antyeates1983/pfss: first release of pfss code. DOI.
Yeates, A.R., Hornig, G.: 2016, The global distribution of magnetic helicity in the solar corona. Astron. Astrophys. 594, A98. DOI. ADS.
ADS
Article
Google Scholar
Yeates, A.R., Mackay, D.H.: 2012, Chirality of high-latitude filaments over Solar Cycle 23. Astrophys. J. Lett. 753(2), L34. DOI. ADS.
ADS
Article
Google Scholar
Yeates, A.R., Mackay, D.H., van Ballegooijen, A.A.: 2008a, Evolution and distribution of current helicity in full-Sun simulations. Astrophys. J. Lett. 680(2), L165. DOI. ADS.
ADS
Article
Google Scholar
Yeates, A.R., Mackay, D.H., van Ballegooijen, A.A.: 2008b, Modelling the global solar corona II: coronal evolution and filament chirality comparison. Solar Phys. 247(1), 103. DOI. ADS.
ADS
Article
Google Scholar
Yeates, A.R., Page, M.H.: 2018, Relative field-line helicity in bounded domains. J. Plasma Phys. 84(6), 775840602. DOI. ADS.
Article
Google Scholar
Yeates, A.R., Amari, T., Contopoulos, I., Feng, X., Mackay, D.H., Mikić, Z., Wiegelmann, T., Hutton, J., Lowder, C.A., Morgan, H., Petrie, G., Rachmeler, L.A., Upton, L.A., Canou, A., Chopin, P., Downs, C., Druckmüller, M., Linker, J.A., Seaton, D.B., Török, T.: 2018, Global non-potential magnetic models of the solar corona during the March 2015 eclipse. Space Sci. Rev. 214(5), 99. DOI. ADS.
ADS
Article
Google Scholar
Zhang, J., Richardson, I.G., Webb, D.F., Gopalswamy, N., Huttunen, E., Kasper, J.C., Nitta, N.V., Poomvises, W., Thompson, B.J., Wu, C.-C., Yashiro, S., Zhukov, A.N.: 2007, Solar and interplanetary sources of major geomagnetic storms (\(Dst \leq -100~\text{nT}\)) during 1996 – 2005. J. Geophys. Res. 112(A10), A10102. DOI. ADS.
ADS
Article
Google Scholar