Skip to main content
Log in

Modelling Persistent Cycles in Solar Activity

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Solar activity at decadal time scales is characterised by persistent periodic patterns with global effects on the Earth’s climate. This article deals with the analysis and prediction of the revised monthly sunspot numbers, adopting a recently proposed time-series model for long-range dependent cycles. The methodology is based on the maximum-likelihood estimate of the model parameters and provides optimal signal extraction filters for cycle estimation and prediction. The analysis suggests the presence of stationary cyclical long memory in the sunspot-generating process. Moreover, our formulation provides a reliable method for solar-cycle predictions, yielding forecasts of the future Cycle 25. In particular, we claim a main peak will occur in early 2024 with an amplitude of 114 and an end of the cycle in early 2030.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data Availability

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

Notes

  1. The optimal values of the power and location parameters in the Box–Cox transformation have been obtained via a grid search procedure over values of \(\nu _{1}\) in the range \([0,1]\) with step 0.05 and values of \(\nu _{2}\) in the range \([0,5]\) with step 0.25. Figure 3 shows the log-likelihood of the untransformed series \(R_{t}\) as a function of the Box–Cox parameters, for the model selected and discussed later in this section. The values that maximise the function resulted in \(\nu _{1}=0.4\) and \(\nu _{2}=0.0\). Consequently, there is no need to introduce a location shift and the power transformation parameter is not far from 0.5. Recall that the log-likelihood of the raw data is obtained via the sum between the likelihood of the transformed series \(y_{t}\) in Equation (8), maximised with respect to \(\boldsymbol {\theta }\), plus the log of the Jacobian of the transformation, given by \((\nu _{1}-1) \sum _{t=1}^{n} \log (R_{t} + \nu _{2})\) (see Box and Cox, 1964, for further details).

References

  • Ahtola, J., Tiao, G.C.: 1987, Distributions of least squares estimators of autoregressive parameters for a process with complex roots on the unit circle. J. Time Ser. Anal. 8, 1. DOI.

    Article  MathSciNet  MATH  Google Scholar 

  • Andel, J.: 1986, Long memory time-series models. Kybernetika 22, 105. http://eudml.org/doc/28174.

    MathSciNet  MATH  Google Scholar 

  • Artiach, M., Arteche, J.: 2011, Estimation of the frequency in cyclical long-memory series. J. Stat. Comput. Simul. 81, 1627. DOI.

    Article  MathSciNet  MATH  Google Scholar 

  • Atkinson, A.C.: 1985, Plots, Transformations, and Regression, Oxford University Press, Oxford. DOI.

    Book  MATH  Google Scholar 

  • Atkinson, A.C., Pericchi, L.R., Smith, R.L.: 1991, Grouped likelihood for the shifted power transformation. J. Roy. Stat. Soc. B 53, 473. DOI.

    Article  MathSciNet  MATH  Google Scholar 

  • Beran, J.: 1994, Statistics for Long-Memory Processes 61, CRC Press, Boca Raton. DOI.

    Book  MATH  Google Scholar 

  • Bierens, H.J.: 2001, Complex unit roots and business cycles: Are they real? Econom. Theory 17, 962. DOI.

    Article  MathSciNet  MATH  Google Scholar 

  • Bloomfield, P.: 1973, An exponential model for the spectrum of a scalar time series. Biometrika 60, 217. DOI.

    Article  MathSciNet  MATH  Google Scholar 

  • Box, G.E.P., Cox, D.R.: 1964, An analysis of transformations. J. Roy. Stat. Soc. B 26, 211. https://www.jstor.org/stable/2984418.

    MATH  Google Scholar 

  • Box, G.E.P., Jenkins, G.M., Reinsel, G.C., Ljung, G.M.: 2015, Time Series Analysis: Forecasting and Control, 5th edn., Wiley Series in Probability and Statistics, Wiley, New York. DOI.

    Book  MATH  Google Scholar 

  • Brockwell, P.J., Davis, R.A.: 1991, Time Series: Theory and Methods: Theory and Methods, Springer, Berlin. DOI.

    Book  MATH  Google Scholar 

  • Chung, C.-F.: 1996, A generalized fractionally integrated autoregressive moving-average process. J. Time Ser. Anal. 17, 111. DOI.

    Article  MathSciNet  MATH  Google Scholar 

  • Dissanayake, G.S., Peiris, M.S., Proietti, T.: 2016, State space modelling of Gegenbauer processes with long memory. Comput. Stat. Data Anal. 100, 115. DOI.

    Article  MATH  Google Scholar 

  • Dissanayake, G., Peiris, M., Proietti, T., et al.: 2018, Fractionally differenced Gegenbauer processes with long memory: A review. Stat. Sci. 33, 413. DOI.

    Article  MathSciNet  MATH  Google Scholar 

  • Gil-Alana, L.A.: 2009, Time series modelling of sunspot numbers using long-range cyclical dependence. Solar Phys. 257, 371. DOI.

    Article  ADS  Google Scholar 

  • Gleissberg, W.: 1939, A long-periodic fluctuation of the sun-spot numbers. Observatory 62, 158. ADS.

    ADS  Google Scholar 

  • Gray, H.L., Zhang, N.-F., Woodward, W.A.: 1989, On generalized fractional processes. J. Time Ser. Anal. 10, 233. DOI.

    Article  MathSciNet  MATH  Google Scholar 

  • Hassler, U.: 2019, Time Series Analysis with Long Memory in View, Wiley, New York. DOI.

    Book  MATH  Google Scholar 

  • Hazra, S., Brun, A.S., Nandy, D.: 2020, Does the mean-field \(\alpha\) effect have any impact on the memory of the solar cycle? Astron. Astrophys. 642, A51. DOI.

    Article  ADS  Google Scholar 

  • Hiremath, K.M.: 2008, Prediction of solar cycle 24 and beyond. Astrophys. Space Sci. 314, 45. DOI.

    Article  ADS  Google Scholar 

  • Hosking, J.R.M.: 1981, Fractional differencing. Biometrika 68, 165. DOI.

    Article  MathSciNet  MATH  Google Scholar 

  • Jensen, J.L.: 1993, Comments on nonparametric predictions of sunspot numbers. Astron. J. 105, 350. DOI.

    Article  ADS  Google Scholar 

  • Khashei, M., Bijari, M.: 2011, A novel hybridization of artificial neural networks and ARIMA models for time series forecasting. Appl. Soft Comput. 11, 2664. The Impact of Soft Computing for the Progress of Artificial Intelligence. DOI.

    Article  Google Scholar 

  • Kolláth, Z., Oláh, K.: 2009, Multiple and changing cycles of active stars - I. Methods of analysis and application to the solar cycles. Astron. Astrophys. 501, 695. DOI.

    Article  ADS  Google Scholar 

  • Mandelbrot, B.B., Wallis, J.R.: 1969, Some long-run properties of geophysical records. Water Resour. Res. 5, 321. DOI.

    Article  ADS  Google Scholar 

  • Morris, M.J.: 1977, Forecasting the sunspot cycle. J. Roy. Stat. Soc. 140, 437. DOI.

    Article  Google Scholar 

  • Muñoz-Jaramillo, A., Dasi-Espuig, M., Balmaceda, L.A., DeLuca, E.E.: 2013, Solar cycle propagation, memory, and prediction: Insights from a century of magnetic proxies. Astrophys. J. 767, L25. DOI.

    Article  ADS  Google Scholar 

  • Oliver, R., Ballester, J.L.: 1996, Rescaled range analysis of the asymmetry of solar activity. Solar Phys. 169, 215. DOI.

    Article  ADS  Google Scholar 

  • Oliver, R., Ballester, J.L.: 1998, Is there memory in solar activity? Phys. Rev. E 58, 5650. DOI.

    Article  ADS  Google Scholar 

  • Oppenheim, G., Viano, M.-C.: 2004, Aggregation of random parameters Ornstein-Uhlenbeck or AR processes: Some convergence results. J. Time Ser. Anal. 25, 335. DOI.

    Article  MathSciNet  MATH  Google Scholar 

  • Pesnell, W.D.: 2012, Solar cycle predictions (invited review). Solar Phys. 281, 507. DOI.

    Article  ADS  Google Scholar 

  • Petrovay, K.: 2010, Solar cycle prediction. Living Rev. Solar Phys. 7, 6. DOI.

    Article  ADS  Google Scholar 

  • Petrovay, K.: 2020, Solar cycle prediction. Living Rev. Solar Phys. 17, 2. DOI.

    Article  ADS  Google Scholar 

  • Proietti, T., Giovannelli, A.: 2018, A Durbin–Levinson regularized estimator of high-dimensional autocovariance matrices. Biometrika 105, 783. DOI.

    Article  MathSciNet  MATH  Google Scholar 

  • Proietti, T., Maddanu, F.: 2021, Modelling cycles in climate series: The fractional Sinusoidal Waveform process. CEIS Working Paper No. 518, available at SSRN: DOI.

  • Robinson, P.M.: 1994, Efficient tests of nonstationary hypotheses. J. Am. Stat. Assoc. 89, 1420. DOI.

    Article  MathSciNet  MATH  Google Scholar 

  • Schatten, K.H., Pesnell, W.D.: 1993, An early solar dynamo prediction: Cycle 23 - cycle 22. Geophys. Res. Lett. 20, 2275. DOI.

    Article  ADS  Google Scholar 

  • Tong, H.: 1990, Non-linear Time Series: A Dynamical System Approach, Clarendon Press, Oxford. DOI.

    Book  MATH  Google Scholar 

  • Usoskin, I.G.: 2017, A history of solar activity over millennia. Living Rev. Solar Phys. 14, 3. DOI.

    Article  ADS  Google Scholar 

  • Werner, R.: 2012, Sunspot number prediction by an autoregressive model. Sun Geosph. 7, 75. ADS.

    ADS  Google Scholar 

  • Woodward, W.A., Cheng, Q.C., Gray, H.L.: 1998, A \(k\)-factor GARMA long-memory model. J. Time Ser. Anal. 19, 485. DOI.

    Article  MathSciNet  MATH  Google Scholar 

  • Yu, Y., van Dyk, D.A., Kashyap, V.L., Young, C.A.: 2012, A Bayesian analysis of the correlations among sunspot cycles. Solar Phys. 281, 847. DOI.

    Article  ADS  Google Scholar 

  • Zhang, G.P.: 2003, Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 50, 159. DOI.

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work was funded by the CY Initiative of Excellence (grant “Investissements d’Avenir” ANR-16-IDEX-0008), Project “EcoDep” PSI-AAP2020-0000000013.

Author information

Authors and Affiliations

Authors

Contributions

The authors did not receive support from any private organization for the submitted work. The data and the code developed for this work are available upon request.

Corresponding author

Correspondence to Federico Maddanu.

Ethics declarations

Conflict of Interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Testing for Nonstationary Cycles

Appendix: Testing for Nonstationary Cycles

This appendix illustrates how the test for a nonstationary cycle at a known frequency proposed by Robinson (1994) is carried out in our case. Consider the linear regression model with fSW errors

$$ \textstyle\begin{array}{l@{\quad }l@{\quad }l} y_{t} & = & \mathbf{x}_{t}'\boldsymbol {\beta }+ \psi _{t} \\ \psi _{t} & = & \alpha _{t} \cos (\lambda t) + \alpha ^{*}_{t} \sin ( \lambda t) \\ (1-L)^{d} \alpha _{t} & = & \eta _{t} \\ (1-L)^{d} \alpha ^{*}_{t} & = & \eta ^{*}_{t}, \\ \end{array} $$
(20)

where \(\mathbf{x}_{t}\) is a vector of exogenous variables and \([\eta _{t}, \eta ^{*}_{t}] \sim N(0,\sigma ^{2}_{\eta }I_{2}) \).

The Lagrange Multiplier (LM) test by Robinson (1994) of the null hypothesis \(H_{0}: d_{0} = 0.5\) against \(H_{1}: d_{0} < 0.5\), is implemented as follows. Considering the complex fractional noise representation of the fSW process (see Proietti and Maddanu, 2021), we regress \(\Phi (L)y_{t}\) on \(\boldsymbol {w}_{t}=\Phi (L) \mathbf{x}_{t}\) where \(\Phi (L) = (1 - 2 \cos (\lambda )L + L^{2})^{d_{0}}\). The resulting ordinary least-square (OLS) estimator \(\hat{\boldsymbol {\beta }}= (\sum _{t=1}^{n} \boldsymbol {w}_{t} \boldsymbol {w}_{t}')^{-1}\sum _{t=1}^{n} \boldsymbol {w}_{t}\Phi (L)y_{t}\) is then used to compute the residuals \(\hat{u}_{t} = \Phi (L)y_{t} - \hat{\boldsymbol {\beta }}'\boldsymbol {w}_{t}\) and the corresponding periodogram \(I_{\hat{u}}(\omega _{j})=\frac{1}{2 \pi n} |\sum _{t=1}^{n} \hat{u}_{t} e^{-\imath \omega _{j} t} |^{2} \).

The LM statistic is

$$ LM(\lambda ,d_{0})=\frac{n}{\hat{\sigma }^{4}_{\eta }} \hat{a} \hat{A}^{-1} \hat{a}, $$
(21)

where

$$ \hat{a}= \frac{2 \pi }{n} \sum _{j=1}^{n-1} \Psi (\omega _{j}) \frac{I_{\hat{u}}(\omega _{j})}{g(\omega _{j})}, $$

and

$$ \hat{A}= 2 \mbox{Var}( \Psi (\omega _{j}) ) $$

with

$$ \Psi (\omega _{j})=\log (1 - 2 \cos (\omega _{j})e^{-\imath \omega _{j}} + e^{-2 \imath \omega _{j}}) $$
$$ g(\omega _{j}) = \frac{1}{4 \pi } \biggr\lbrace \biggr| \sin ( \frac{\omega _{j} - \lambda }{2}) \biggr|^{2 d_{0}} + \biggr| \sin ( \frac{\omega _{j} + \lambda }{2}) \biggr|^{2 d_{0}} \biggr\rbrace , $$

while the \(\sigma ^{2}_{\eta }\) parameter is estimated as

$$ \hat{\sigma }^{2}_{\eta }= \exp (\hat{b}_{0}), $$
(22)

where \(b_{0}\) is the intercept estimated via the linear regression \(\ln (2\pi ) I_{\hat{u}}(\omega _{j}) + c= b_{0}+ 2 \sum _{i=1}^{K} b_{i} \cos (i \omega _{j}) + e_{t}\) (\(c=0.57721\) is Euler’s constant), see Bloomfield (1973), where \(K\) is chosen according to the Akaike information criterion.

Robinson (1994) shows that the LM statistic has a standard chi-square distribution with one degree of freedom.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maddanu, F., Proietti, T. Modelling Persistent Cycles in Solar Activity. Sol Phys 297, 13 (2022). https://doi.org/10.1007/s11207-021-01943-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-021-01943-w

Keywords

Navigation