Skip to main content
Log in

Quasi-Periodic Energy Release in a Three-Ribbon Solar Flare

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Quasi-periodic pulsations (QPPs) are found in solar flares of various magnetic morphologies, e.g. in two-ribbon or circular-ribbon flares, and the mechanisms of their generation are not yet clear. Here we present the first detailed analysis of QPPs (with a period \(P = 54 \pm 13\) seconds) found in the Ramaty High Energy Solar Spectroscopic Imager (RHESSI) observations of a relatively rare three-ribbon M1.1 class flare that occurred on 5 July 2012 (SOL2012-07-05T06:49). QPPs are manifested in the temporal profiles of temperature [\(T\)] and emission measure [\(EM\)] of “super-hot” (\(T_{ \mathrm{s}} \approx 30\) – 50 MK) plasma but are almost invisible in the profiles of “hot” (\(T_{\mathrm{h}} \approx 15\) – 20 MK) plasma parameters when approximating X-ray spectra of the flare with the bremsstrahlung spectrum of a two-temperature thermal (Maxwellian) plasma. In addition, QPPs with a similar period are found in the temporal profiles of the flux and spectral index of nonthermal electrons if the observed X-ray spectra are approximated by a combination of the bremsstrahlung spectra of a single-temperature plasma and nonthermal electrons with a power-law energy distribution. QPPs are not well expressed in the X-ray flux according to RHESSI and GOES data, or in radio data. The QPPs are accompanied by apparent systematic movement of a single X-ray source at a low speed of \(34 \pm 21\) km s−1 along the central flare ribbon over a narrow (\(<5\) Mm) “tongue” of negative magnetic polarity, elongated (\(\approx 20\) Mm) between two areas of positive polarity. The results of magnetic extrapolation in the nonlinear force-free field (NLFFF) approximation show that the X-ray source could move along curved and twisted field lines between two sheared flare arcades. It is worth noting that in the homologous three-ribbon M6.1 flare (SOL2012-07-05T11:39), which occurred in the same region about five hours later, the X-ray sources moved much less systematically and did not produce similar QPPs. We interpret the observed QPPs as a result of successive episodes of energy release in different spatial locations. In each pulsation, ≈(1 – 4)\(\times 10^{29}\) erg is released in the form of thermal energy of hot and super-hot plasmas (or accelerated electrons), which is comparable with the energy of a microflare. The total kinetic energy released during all QPPs is ≈(0.7 – 3.5)\(\times 10^{30}\) erg, which is about an order of magnitude less than the free magnetic energy \(\approx 1.56 \times 10^{31}\) erg released in the flare region. We discuss possible propagating triggers of the quasi-periodic energy release (slow magnetoacoustic waves, asymmetric rise of curved/twisted field lines, flapping oscillations, and thermal instability in a reconnecting current sheet) and argue that the current state of available mechanisms and observations does not allow us to reach an unambiguous conclusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Artemyev, A., Zimovets, I.: 2012, Stability of current sheets in the solar corona. Solar Phys. 277, 283. DOI. ADS.

    Article  ADS  Google Scholar 

  • Aschwanden, M.J., Montello, M.L., Dennis, B.R., Benz, A.O.: 1995, Sequences of correlated hard X-ray and type III bursts during solar flares. Astrophys. J. 440, 394. DOI. ADS.

    Article  ADS  Google Scholar 

  • Aulanier, G., Golub, L., DeLuca, E.E., Cirtain, J.W., Kano, R., Lundquist, L.L., Narukage, N., Sakao, T., Weber, M.A.: 2007, Slipping magnetic reconnection in coronal loops. Science 318, 1588. DOI. ADS.

    Article  ADS  Google Scholar 

  • Benz, A.O.: 2017, Flare observations. Liv. Rev. Solar Phys. 14, 2. DOI. ADS.

    Article  ADS  Google Scholar 

  • Benz, A.O., Monstein, C., Meyer, H., Manoharan, P.K., Ramesh, R., Altyntsev, A., Lara, A., Paez, J., Cho, K.-S.: 2009, A world-wide net of solar radio spectrometers: e-CALLISTO. Earth Moon Planets 104, 277. DOI. ADS.

    Article  ADS  Google Scholar 

  • Bogachev, S.A., Somov, B.V., Kosugi, T., Sakao, T.: 2005, The motions of the hard X-ray sources in solar flares: images and statistics. Astrophys. J. 630, 561. DOI. ADS.

    Article  ADS  Google Scholar 

  • Broomhall, A.-M., Davenport, J.R.A., Hayes, L.A., Inglis, A.R., Kolotkov, D.Y., McLaughlin, J.A., Mehta, T., Nakariakov, V.M., Notsu, Y., Pascoe, D.J., Pugh, C.E., Van Doorsselaere, T.: 2019, A blueprint of state-of-the-art techniques for detecting quasi-periodic pulsations in solar and stellar flares. Astrophys. J. Suppl. 244, 44. DOI. ADS.

    Article  ADS  Google Scholar 

  • Brosius, J.W., Daw, A.N., Inglis, A.R.: 2016, Quasi-periodic fluctuations and chromospheric evaporation in a solar flare ribbon observed by Hinode/EIS, IRIS, and RHESSI. Astrophys. J. 830, 101. DOI. ADS.

    Article  ADS  Google Scholar 

  • Brown, J.C.: 1973, The temperature structure of chromospheric flares heated by non-thermal electrons. Solar Phys. 31, 143. DOI. ADS.

    Article  ADS  Google Scholar 

  • Caspi, A., Krucker, S., Lin, R.P.: 2014, Statistical properties of super-hot solar flares. Astrophys. J. 781, 43. DOI. ADS.

    Article  ADS  Google Scholar 

  • Caspi, A., Lin, R.P.: 2010, RHESSI line and continuum observations of super-hot flare plasma. Astrophys. J. Lett. 725, L161. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chen, X., Yan, Y., Tan, B., Huang, J., Wang, W., Chen, L., Zhang, Y., Tan, C., Liu, D., Masuda, S.: 2019, Quasi-periodic Pulsations before and during a Solar Flare in AR 12242. Astrophys. J. 878, 78. DOI. ADS.

    Article  ADS  Google Scholar 

  • Clarke, B.P., Hayes, L.A., Gallagher, P.T., Maloney, S.A., Carley, E.P.: 2021, Quasi-periodic particle acceleration in a solar flare. Astrophys. J. 910, 123. DOI. ADS.

    Article  ADS  Google Scholar 

  • Dennis, B.R., Pernak, R.L.: 2009, Hard X-ray flare source sizes measured with the Ramaty High Energy Solar Spectroscopic Imager. Astrophys. J. 698, 2131. DOI. ADS.

    Article  ADS  Google Scholar 

  • Dominique, M., Zhukov, A.N., Dolla, L., Inglis, A., Lapenta, G.: 2018, Detection of quasi-periodic pulsations in solar EUV time series. Solar Phys. 293, 61. DOI. ADS.

    Article  ADS  Google Scholar 

  • Emslie, A.G., Dennis, B.R., Shih, A.Y., Chamberlin, P.C., Mewaldt, R.A., Moore, C.S., Share, G.H., Vourlidas, A., Welsch, B.T.: 2012, Global energetics of thirty-eight large solar eruptive events. Astrophys. J. 759, 71. DOI. ADS.

    Article  ADS  Google Scholar 

  • Fivian, M., Hemmeck, R., McHedlishvili, A., Zehnder, A.: 2002, RHESSI aspect reconstruction. Solar Phys. 210, 87. DOI. ADS.

    Article  ADS  Google Scholar 

  • Fletcher, L., Dennis, B.R., Hudson, H.S., Krucker, S., Phillips, K., Veronig, A., Battaglia, M., Bone, L., Caspi, A., Chen, Q., Gallagher, P., Grigis, P.T., Ji, H., Liu, W., Milligan, R.O., Temmer, M.: 2011, An observational overview of solar flares. Space Sci. Rev. 159, 19. DOI. ADS.

    Article  ADS  Google Scholar 

  • Garcia, H.A.: 1994, Temperature and emission measure from goes soft X-ray measurements. Solar Phys. 154, 275. DOI. ADS.

    Article  ADS  Google Scholar 

  • Grechnev, V.V., White, S.M., Kundu, M.R.: 2003, Quasi-periodic pulsations in a solar microwave burst. Astrophys. J. 588, 1163. DOI. ADS.

    Article  ADS  Google Scholar 

  • Grechnev, V.V., Meshalkina, N.S., Uralov, A.M., Kochanov, A.A., Lesovoi, S.V., Myshyakov, I.I., Kiselev, V.I., Zhdanov, D.A., Altyntsev, A.T., Globa, M.V.: 2020, Twin null-point-associated major eruptive three-ribbon flares with unusual microwave spectra. Solar Phys. 295, 128. DOI. ADS.

    Article  ADS  Google Scholar 

  • Grigis, P.C., Benz, A.O.: 2005, The evolution of reconnection along an arcade of magnetic loops. Astrophys. J. Lett. 625, L143. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gruszecki, M., Nakariakov, V.M.: 2011, Slow magnetacoustic waves in magnetic arcades. Astron. Astrophys. 536, A68. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hannah, I.G., Christe, S., Krucker, S., Hurford, G.J., Hudson, H.S., Lin, R.P.: 2008b, RHESSI microflare statistics. II. X-ray imaging, spectroscopy, and energy distributions. Astrophys. J. 677, 704. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hannah, I.G., Krucker, S., Hudson, H.S., Christe, S., Lin, R.P.: 2008a, An intriguing solar microflare observed with RHESSI, Hinode, and TRACE. Astron. Astrophys. 481, L45. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hannah, I.G., Hudson, H.S., Battaglia, M., Christe, S., Kašparová, J., Krucker, S., Kundu, M.R., Veronig, A.: 2011, Microflares and the statistics of X-ray flares. Space Sci. Rev. 159, 263. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hayes, L.A., Inglis, A.R., Christe, S., Dennis, B., Gallagher, P.T.: 2020, Statistical study of GOES X-ray quasi-periodic pulsations in solar flares. Astrophys. J. 895, 50. DOI. ADS.

    Article  ADS  Google Scholar 

  • Holman, G.D., Aschwanden, M.J., Aurass, H., Battaglia, M., Grigis, P.C., Kontar, E.P., Liu, W., Saint-Hilaire, P., Zharkova, V.V.: 2011, Implications of X-ray observations for electron acceleration and propagation in solar flares. Space Sci. Rev. 159, 107. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hurford, G.J., Schmahl, E.J., Schwartz, R.A., Conway, A.J., Aschwanden, M.J., Csillaghy, A., Dennis, B.R., Johns-Krull, C., Krucker, S., Lin, R.P., McTiernan, J., Metcalf, T.R., Sato, J., Smith, D.M.: 2002, The RHESSI imaging concept. Solar Phys. 210, 61. DOI. ADS.

    Article  ADS  Google Scholar 

  • Inglis, A.R., Dennis, B.R.: 2012, The relationship between hard X-ray pulse timings and the locations of footpoint sources during solar flares. Astrophys. J. 748, 139. DOI. ADS.

    Article  ADS  Google Scholar 

  • Inglis, A.R., Zimovets, I.V., Dennis, B.R., Kontar, E.P., Nakariakov, V.M., Struminsky, A.B., Tolbert, A.K.: 2011, Instrumental oscillations in RHESSI count rates during solar flares. Astron. Astrophys. 530, A47. DOI. ADS.

    Article  ADS  Google Scholar 

  • Inglis, A.R., Ireland, J., Dennis, B.R., Hayes, L., Gallagher, P.: 2016, A large-scale search for evidence of quasi-periodic pulsations in solar flares. Astrophys. J. 833, 284. DOI. ADS.

    Article  ADS  Google Scholar 

  • Janvier, M., Aulanier, G., Démoulin, P.: 2015, From coronal observations to MHD simulations, the building blocks for 3D models of solar flares (invited review). Solar Phys. 290, 3425. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kashapova, L.K., Kupriyanova, E.G., Xu, Z., Reid, H.A.S., Kolotkov, D.Y.: 2020, The origin of quasi-periodicities during circular ribbon flares. Astron. Astrophys. 642, A195. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kim, S., Masuda, S., Shibasaki, K., Bong, S.-C.: 2013, Systematic microwave source motions along a flare-arcade observed by Nobeyama Radioheliograph and AIA/SDO. Publ. Astron. Soc. Japan 65, S2. DOI. ADS.

    Article  Google Scholar 

  • Kumar, P., Nakariakov, V.M., Cho, K.-S.: 2016, Observation of a quasiperiodic pulsation in hard X-ray, radio, and extreme-ultraviolet wavelengths. Astrophys. J. 822, 7. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kupriyanova, E.G., Kashapova, L.K., Reid, H.A.S., Myagkova, I.N.: 2016, Relationship of type III radio bursts with quasi-periodic pulsations in a solar flare. Solar Phys. 291, 3427. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kupriyanova, E., Kolotkov, D., Nakariakov, V., Kaufman, A.: 2020, Quasi-periodic pulsations in solar and stellar flares. Review. J. Solar-Terr. Phys. 6, 3. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kuznetsov, S.A., Zimovets, I.V., Morgachev, A.S., Struminsky, A.B.: 2016, Spatio-temporal dynamics of sources of hard X-ray pulsations in solar flares. Solar Phys. 291, 3385. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kuznetsov, S.A., Zimovets, I.V., Melnikov, V.F., Wang, R.: 2017, Spatio-temporal evolution of sources of microwave and hard X-ray pulsations of the solar flare using the NoRH, RHESSI, and AIA/SDO observation data. Geomagn. Aeron. 57, 1067. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ledentsov, L.: 2021a, Thermal trigger for solar flares I: fragmentation of the preflare current layer. Solar Phys. 296, 74. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ledentsov, L.: 2021b, Thermal trigger for solar flares II: effect of the guide magnetic field. Solar Phys. 296, 93. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ledentsov, L.: 2021c, Thermal trigger for solar flares III: effect of the oblique layer fragmentation. Solar Phys. 296, 117. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ledentsov, L.S., Somov, B.V.: 2016, Thermal instability of the reconnecting current layer in solar flares. Astron. Lett. 42, 841. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., Hurlburt, N.E., Katz, N.L., Kushner, G.D., Levay, M., Lindgren, R.W., Mathur, D.P., McFeaters, E.L., Mitchell, S., Rehse, R.A., Schrijver, C.J., Springer, L.A., Stern, R.A., Tarbell, T.D., Wuelser, J.-P., Wolfson, C.J., Yanari, C., Bookbinder, J.A., Cheimets, P.N., Caldwell, D., Deluca, E.E., Gates, R., Golub, L., Park, S., Podgorski, W.A., Bush, R.I., Scherrer, P.H., Gummin, M.A., Smith, P., Auker, G., Jerram, P., Pool, P., Soufli, R., Windt, D.L., Beardsley, S., Clapp, M., Lang, J., Waltham, N.: 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 17. DOI. ADS.

    Article  ADS  Google Scholar 

  • Li, D., Ning, Z.J., Zhang, Q.M.: 2015, Imaging and spectral observations of quasi-periodic pulsations in a solar flare. Astrophys. J. 807, 72. DOI. ADS.

    Article  ADS  Google Scholar 

  • Li, T., Zhang, J.: 2015, Quasi-periodic slipping magnetic reconnection during an X-class solar flare observed by the Solar Dynamics Observatory and Interface Region Imaging Spectrograph. Astrophys. J. Lett. 804, L8. DOI. ADS.

    Article  ADS  Google Scholar 

  • Li, D., Kolotkov, D.Y., Nakariakov, V.M., Lu, L., Ning, Z.J.: 2020, Quasi-periodic pulsations of gamma-ray emissions from a solar flare on 2017 September 6. Astrophys. J. 888, 53. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lin, R.P., Dennis, B.R., Hurford, G.J., Smith, D.M., Zehnder, A., Harvey, P.R., Curtis, D.W., Pankow, D., Turin, P., Bester, M., Csillaghy, A., Lewis, M., Madden, N., van Beek, H.F., Appleby, M., Raudorf, T., McTiernan, J., Ramaty, R., Schmahl, E., Schwartz, R., Krucker, S., Abiad, R., Quinn, T., Berg, P., Hashii, M., Sterling, R., Jackson, R., Pratt, R., Campbell, R.D., Malone, D., Landis, D., Barrington-Leigh, C.P., Slassi-Sennou, S., Cork, C., Clark, D., Amato, D., Orwig, L., Boyle, R., Banks, I.S., Shirey, K., Tolbert, A.K., Zarro, D., Snow, F., Thomsen, K., Henneck, R., McHedlishvili, A., Ming, P., Fivian, M., Jordan, J., Wanner, R., Crubb, J., Preble, J., Matranga, M., Benz, A., Hudson, H., Canfield, R.C., Holman, G.D., Crannell, C., Kosugi, T., Emslie, A.G., Vilmer, N., Brown, J.C., Johns-Krull, C., Aschwanden, M., Metcalf, T., Conway, A.: 2002, The Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI). Solar Phys. 210, 3. DOI. ADS.

    Article  ADS  Google Scholar 

  • Liu, R., Alexander, D., Gilbert, H.R.: 2009, Asymmetric eruptive filaments. Astrophys. J. 691, 1079. DOI. ADS.

    Article  ADS  Google Scholar 

  • Liu, W., Petrosian, V., Dennis, B.R., Jiang, Y.W.: 2008, Double coronal hard and soft X-ray source observed by RHESSI: evidence for magnetic reconnection and particle acceleration in solar flares. Astrophys. J. 676, 704. DOI. ADS.

    Article  ADS  Google Scholar 

  • Liu, C., Lee, J., Jing, J., Liu, R., Deng, N., Wang, H.: 2010, Motions of hard X-ray sources during an asymmetric eruption. Astrophys. J. Lett. 721, L193. DOI. ADS.

    Article  ADS  Google Scholar 

  • Masson, S., Pariat, E., Aulanier, G., Schrijver, C.J.: 2009, The nature of flare ribbons in coronal null-point topology. Astrophys. J. 700, 559. DOI. ADS.

    Article  ADS  Google Scholar 

  • McLaughlin, J.A., Nakariakov, V.M., Dominique, M., Jelínek, P., Takasao, S.: 2018, Modelling quasi-periodic pulsations in solar and stellar flares. Space Sci. Rev. 214, 45. DOI. ADS.

    Article  ADS  Google Scholar 

  • Nakariakov, V.M., Melnikov, V.F.: 2009, Quasi-periodic pulsations in solar flares. Space Sci. Rev. 149, 119. DOI. ADS.

    Article  ADS  Google Scholar 

  • Nakariakov, V.M., Zimovets, I.V.: 2011, Slow magnetoacoustic waves in two-ribbon flares. Astrophys. J. Lett. 730, L27. DOI. ADS.

    Article  ADS  Google Scholar 

  • Nakariakov, V.M., Inglis, A.R., Zimovets, I.V., Foullon, C., Verwichte, E., Sych, R., Myagkova, I.N.: 2010, Oscillatory processes in solar flares. Plasma Phys. Control. Fusion 52, 124009. DOI. ADS.

    Article  ADS  Google Scholar 

  • Nakariakov, V.M., Pilipenko, V., Heilig, B., Jelínek, P., Karlický, M., Klimushkin, D.Y., Kolotkov, D.Y., Lee, D.-H., Nisticò, G., Van Doorsselaere, T., Verth, G., Zimovets, I.V.: 2016, Magnetohydrodynamic oscillations in the solar corona and Earth’s magnetosphere: towards consolidated understanding. Space Sci. Rev. 200, 75. DOI. ADS.

    Article  ADS  Google Scholar 

  • Pariat, E., Antiochos, S.K., DeVore, C.R.: 2010, Three-dimensional modeling of quasi-homologous solar jets. Astrophys. J. 714, 1762. DOI. ADS.

    Article  ADS  Google Scholar 

  • Priest, E.R., Forbes, T.G.: 2002, The magnetic nature of solar flares. Astron. Astrophys. Rev. 10, 313. DOI. ADS.

    Article  ADS  Google Scholar 

  • Pugh, C.E., Broomhall, A.-M., Nakariakov, V.M.: 2019, Scaling laws of quasi-periodic pulsations in solar flares. Astron. Astrophys. 624, A65. DOI. ADS.

    Article  Google Scholar 

  • Pugh, C.E., Nakariakov, V.M., Broomhall, A.-M., Bogomolov, A.V., Myagkova, I.N.: 2017, Properties of quasi-periodic pulsations in solar flares from a single active region. Astron. Astrophys. 608, A101. DOI. ADS.

    Article  Google Scholar 

  • Qiu, J., Longcope, D.W., Cassak, P.A., Priest, E.R.: 2017, Elongation of flare ribbons. Astrophys. J. 838, 17. DOI. ADS.

    Article  ADS  Google Scholar 

  • Reid, H.A.S., Ratcliffe, H.: 2014, A review of solar type III radio bursts. Res. Astron. Astrophys. 14, 773. DOI. ADS.

    Article  ADS  Google Scholar 

  • Rudenko, G.V., Myshyakov, I.I.: 2009, Analysis of reconstruction methods for nonlinear force-free fields. Solar Phys. 257, 287. DOI. ADS.

    Article  ADS  Google Scholar 

  • Scherrer, P.H., Schou, J., Bush, R.I., Kosovichev, A.G., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Zhao, J., Title, A.M., Schrijver, C.J., Tarbell, T.D., Tomczyk, S.: 2012, The Helioseismic and Magnetic Imager (HMI) investigation for the Solar Dynamics Observatory (SDO). Solar Phys. 275, 207. DOI. ADS.

    Article  ADS  Google Scholar 

  • Schrijver, C.J., DeRosa, M.L., Metcalf, T., Barnes, G., Lites, B., Tarbell, T., McTiernan, J., Valori, G., Wiegelmann, T., Wheatland, M.S., Amari, T., Aulanier, G., Démoulin, P., Fuhrmann, M., Kusano, K., Régnier, S., Thalmann, J.K.: 2008, Nonlinear force-free field modeling of a solar active region around the time of a major flare and coronal mass ejection. Astrophys. J. 675, 1637. DOI. ADS.

    Article  ADS  Google Scholar 

  • Schwartz, R.A., Csillaghy, A., Tolbert, A.K., Hurford, G.J., McTiernan, J., Zarro, D.: 2002, RHESSI data analysis software: rationale and methods. Solar Phys. 210, 165. DOI. ADS.

    Article  ADS  Google Scholar 

  • Sharykin, I.N., Struminskii, A.B., Zimovets, I.V.: 2015, Plasma heating to super-hot temperatures (>30 MK) in the August 9, 2011 solar flare. Astron. Lett. 41, 53. DOI. ADS.

    Article  ADS  Google Scholar 

  • Sharykin, I.N., Zimovets, I.V., Myshyakov, I.I.: 2020, Flare energy release at the magnetic field polarity inversion line during the M1.2 solar flare of 2015 March 15. II. Investigation of photospheric electric current and magnetic field variations using HMI 135 s vector magnetograms. Astrophys. J. 893, 159. DOI. ADS.

    Article  ADS  Google Scholar 

  • Sharykin, I.N., Struminsky, A.B., Zimovets, I.V., Gan, W.-Q.: 2016, Solar flares with similar soft but different hard X-ray emissions: case and statistical studies. Res. Astron. Astrophys. 16, 5. DOI. ADS.

    Article  ADS  Google Scholar 

  • Sharykin, I.N., Zimovets, I.V., Myshyakov, I.I., Meshalkina, N.S.: 2018, Flare energy release at the magnetic field polarity inversion line during the M1.2 solar flare of 2015 March 15. I. Onset of plasma heating and electron acceleration. Astrophys. J. 864, 156. DOI. ADS.

    Article  ADS  Google Scholar 

  • Shibata, K., Magara, T.: 2011, Solar flares: magnetohydrodynamic processes. Liv. Rev. Solar Phys. 8, 6. DOI. ADS.

    Article  ADS  Google Scholar 

  • Simões, P.J.A., Hudson, H.S., Fletcher, L.: 2015, Soft X-ray pulsations in solar flares. Solar Phys. 290, 3625. DOI. ADS.

    Article  ADS  Google Scholar 

  • Smith, D.M., Lin, R.P., Turin, P., Curtis, D.W., Primbsch, J.H., Campbell, R.D., Abiad, R., Schroeder, P., Cork, C.P., Hull, E.L., Landis, D.A., Madden, N.W., Malone, D., Pehl, R.H., Raudorf, T., Sangsingkeow, P., Boyle, R., Banks, I.S., Shirey, K., Schwartz, R.: 2002, The RHESSI spectrometer. Solar Phys. 210, 33. DOI. ADS.

    Article  ADS  Google Scholar 

  • Song, Y.L., Tian, H., Zhang, M., Ding, M.D.: 2018, Observations of white-light flares in NOAA active region 11515: high occurrence rate and relationship with magnetic transients. Astron. Astrophys. 613, A69. DOI. ADS.

    Article  ADS  Google Scholar 

  • Sui, L., Holman, G.D.: 2003, Evidence for the formation of a large-scale current sheet in a solar flare. Astrophys. J. Lett. 596, L251. DOI. ADS.

    Article  ADS  Google Scholar 

  • Sun, X., Hoeksema, J.T., Liu, Y., Aulanier, G., Su, Y., Hannah, I.G., Hock, R.A.: 2013, Hot spine loops and the nature of a late-phase solar flare. Astrophys. J. 778, 139. DOI. ADS.

    Article  ADS  Google Scholar 

  • Tsuneta, S., Ichimoto, K., Katsukawa, Y., Nagata, S., Otsubo, M., Shimizu, T., Suematsu, Y., Nakagiri, M., Noguchi, M., Tarbell, T., Title, A., Shine, R., Rosenberg, W., Hoffmann, C., Jurcevich, B., Kushner, G., Levay, M., Lites, B., Elmore, D., Matsushita, T., Kawaguchi, N., Saito, H., Mikami, I., Hill, L.D., Owens, J.K.: 2008, The Solar Optical Telescope for the Hinode mission: an overview. Solar Phys. 249, 167. DOI. ADS.

    Article  ADS  Google Scholar 

  • Van Doorsselaere, T., Kupriyanova, E.G., Yuan, D.: 2016, Quasi-periodic pulsations in solar and stellar flares: an overview of recent results (invited review). Solar Phys. 291, 3143. DOI. ADS.

    Article  ADS  Google Scholar 

  • Veronig, A.M., Brown, J.C.: 2004, A coronal thick-target interpretation of two hard X-ray loop events. Astrophys. J. Lett. 603, L117. DOI. ADS.

    Article  ADS  Google Scholar 

  • Vorpahl, J.A.: 1976, The triggering and subsequent development of a solar flare. Astrophys. J. 205, 868. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wang, H., Liu, C., Deng, N., Zeng, Z., Xu, Y., Jing, J., Cao, W.: 2014, Study of two successive three-ribbon solar flares on 2012 July 6. Astrophys. J. Lett. 781, L23. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wheatland, M.S., Sturrock, P.A., Roumeliotis, G.: 2000, An optimization approach to reconstructing force-free fields. Astrophys. J. 540, 1150. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zhang, Q.M., Li, D., Ning, Z.J.: 2016, Chromospheric condensation and quasi-periodic pulsations in a circular-ribbon flare. Astrophys. J. 832, 65. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zimovets, I.V., Sharykin, I.N., Gan, W.Q.: 2020, Relationships between photospheric vertical electric currents and hard X-ray sources in solar flares: statistical study. Astrophys. J. 891, 138. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zimovets, I.V., Struminsky, A.B.: 2009, Imaging observations of quasi-periodic pulsatory nonthermal emission in two-ribbon solar flares. Solar Phys. 258, 69. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zimovets, I.V., Struminsky, A.B.: 2010, Observations of double-periodic X-ray emission in interacting systems of solar flare loops. Solar Phys. 263, 163. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zimovets, I.V., Wang, R., Liu, Y.D., Wang, C., Kuznetsov, S.A., Sharykin, I.N., Struminsky, A.B., Nakariakov, V.M.: 2018, Magnetic structure of solar flare regions producing hard X-ray pulsations. J. Atmos. Solar-Terr. Phys. 174, 17. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zimovets, I.V., McLaughlin, J.A., Srivastava, A.K., Kolotkov, D.Y., Kuznetsov, A.A., Kupriyanova, E.G., Cho, I.-H., Inglis, A.R., Reale, F., Pascoe, D.J., Tian, H., Yuan, D., Li, D., Zhang, Q.M.: 2021, Quasi-periodic pulsations in solar and stellar flares: a review of underpinning physical mechanisms and their predicted observational signatures. Space Sci. Rev. 217, 66. DOI. ADS.

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors thank the organizers of the conference MHD Coronal Seismology 2020: Twenty Years of Probing the Sun’s Corona with MHD Waves, where the preliminary results of this work have been presented and discussed. We are greatful to the teams of the RHESSI, GOES, SDO/AIA, SDO/HMI, RSTN, e-Callisto (Bleien radio telescopes, Switzerland and Metsähovi Radio Observatory, Finland) instruments for their open data use policy. RHESSI is a NASA Small Explorer Mission. SDO is a mission for NASA Living With a Star (LWS) program. The Callisto data access is made available by the Institute for Data Science FHNW Brugg/Windisch, Switzerland. The work by I. Zimovets and I. Sharykin (all except the NLFFF extrapolation) is supported by the budgetary funding of the Basic Research Program “PLASMA”. The work by I. Myshyakov (NLFFF extrapolation) is supported by the program of Basic Research No. II.16.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Zimovets.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection:

Magnetohydrodynamic (MHD) Waves and Oscillations in the Sun’s Corona and MHD Coronal Seismology

Guest Editors: Dmitrii Kolotkov and Bo Li

Appendix

Appendix

Here we address the question of whether the quasi-periodic variations (or QPPs) of the model parameters found from the X-ray spectra fitting could be a result of a known artifact in the RHESSI data. Inglis et al. (2011) found that count rates of the RHESSI detectors can contain artificial oscillations with period \(P_{\mathrm{art}} \approx 75\) seconds. In some flares, these oscillations are more pronounced, in others less so, or almost invisible. Since the period (\(P_{\mathrm{QPP}} = 54 \pm 13\) seconds) of the quasi-periodic variations is close to \(P_{\mathrm{art}}\), it makes sense to check whether they correspond to these artificial oscillations or not.

The RHESSI spacecraft rotates with a period of \(\approx 4\) seconds and experiences nutation. This motion produces oscillations of the telescope imaging axis with respect to the spacecraft spin axis (these axes do not coincide with each other; see Fivian et al., 2002). The axis of each collimator deviates slightly from the imaging axis, and this deviation is different for different collimators. For Detector 5 (\(\mathrm{D5}\)) the deviation is one of the largest, and hence the amplitude of the artificial-count rate oscillations of this detector can also be one of the largest (see Inglis et al., 2011).

Figure 18b shows the temporal profile of the angular distance [\(d\left ( t\right ) \)] between the RHESSI imaging-axis direction and the mean flare position in the image plane. It has a time step of one second, and it is smoothed over four seconds, i.e. about one period of the RHESSI rotation. The fast variations can be seen on top of the smoother sinusoidal variations with an amplitude of about 250 arcseconds. The fast variations have a period of about four seconds and are a consequence of the rotation of the spacecraft, while longer variations have a period of about 75 seconds, i.e. around \(P_{\mathrm{art}}\), and they are a consequence of nutation. The Fourier spectrum of this signal is shown in Figure 18a, where one can see two sharp peaks corresponding to periods of about 2 and 4 seconds and one wider peak at about 75 seconds. For comparison, Figures 18c and 18d show the count rates averaged over the RHESSI detectors and the temporal profile of the super-hot plasma temperature [\(T_{2}\left ( t\right ) \)] obtained in the 2vth model, respectively.

Figure 18
figure 18

(a) Fourier spectrum of the smoothed temporal dependence of the angular distance between the RHESSI imaging-axis direction and the average position of the M1.1 flare studied. This temporal dependence smoothed over four seconds is shown in (b). Three spectral peaks with periods of 2, 4, and 75 seconds are indicated in (a) with vertical dotted blue, green, and red lines, respectively. (c) Count rates with the time step of four seconds averaged over the RHESSI’s front detectors in five energy ranges 3 – 6 (dark blue), 6 – 12 (black), 12 – 25 (cyan), 25 – 50 (red), and 50 – 100 (green) keV. (d) Temporal profile of the super-hot plasma temperature determined within the 2vth model. Peaks of pulsations \(\mathrm{P_{1}}\) – \(\mathrm{P_{7}}\) are shown with the red vertical dashed lines in (b – d).

Overall, Figure 18 shows the following: i) unlike an almost sinusoidal signal \(d\left ( t\right )\) with a period \(P_{\mathrm{art}} \approx 75\) seconds, variations in \(T_{2}\left ( t\right )\) are unstable, i.e. have a variable period and amplitudes, ii) the temporal profiles \(d\left ( t\right )\) and \(T_{2}\left ( t\right )\) are not in phase, the peaks of \(T_{2}\left ( t\right )\) fall on different phases of the \(d\left ( t\right )\) oscillations, iii) no oscillations are seen in the averaged count rates of the RHESSI detectors. The oscillations with a period of \(P_{\mathrm{art}} \approx 75\) seconds are also not visible in the count rates of individual detectors \(\mathrm{D1}, \mathrm{D2}, \ldots , \mathrm{D9}\) in different energy ranges from 3 to 100 keV (Figure 19). The oscillations are not even visible in the count rates of the \(\mathrm{D5}\) detector, for which the largest amplitude would be expected.

Figure 19
figure 19

Count rates of RHESSI’s front detectors \(\mathrm{D1}, \mathrm{D2}, \ldots , \mathrm{D9}\) (shown by different colors from black to red and indicated on (a)) with temporal cadence of four seconds in five energy ranges: 3 – 6 (a), 6 – 12 (b), 12 – 25 (c), 25 – 50 (d), and 50 – 100 (e) keV. (f) The four-second smoothed time dependence of the angular distance between the RHESSI imaging-axis direction and the average position of the M1.1 flare studied.

Thus, in the event under consideration, this artifact practically did not appear, and the arguments stated above oppose the possibility that the QPPs found may be a consequence of the artifact considered in the RHESSI data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zimovets, I., Sharykin, I. & Myshyakov, I. Quasi-Periodic Energy Release in a Three-Ribbon Solar Flare. Sol Phys 296, 188 (2021). https://doi.org/10.1007/s11207-021-01936-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-021-01936-9

Keywords

Navigation