Skip to main content
Log in

Polarized Forbidden Coronal Line Emission in the Presence of Active Regions

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Photoexcited forbidden lines at visible and infrared wavelengths provide important diagnostics for the coronal magnetic field via scattering induced polarization and the Zeeman effect. In forward models, the polarized formation of these lines is often treated assuming a simplified exciting radiation field consisting only of the photospheric quiet-Sun continuum, which is both cylindrically-symmetric relative to the solar vertical and unpolarized. In particular, this assumption breaks down near active regions, especially due to the presence of sunspots and other surface features that modify the strength and anisotropy of the continuum radiation field. Here we investigate the role of symmetry-breaking on the emergent polarized emission in high resolution models of the active corona simulated with the MURaM code. We treat the full 3D unpolarized continuum radiation field of the photosphere that excites the coronal ions and compare the cases where the symmetry-breaking effects of the photospheric features are included or ignored. Our discussion focuses on the key observables soon to be available by the National Science Foundation’s Daniel K Inouye Solar Telescope. The results indicate that while symmetry breaking can in principle have a large effect, its role is relatively minor for the simulated active region, largely due to the low inherent polarization fraction emitted by forbidden lines in denser active region plasmas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

Notes

  1. pyCELP refers to the python package for Coronal Emission Line Polarization, which is an updated version of the code introduced in Paper I. This code is publicly available at https://github.com/tschad/pycelp. See the Appendix for more details.

  2. See Paper I for further discussion of the influence of the number of included levels on the calculated atomic level polarization.

  3. We point out that there is a scale error in the top left panel of Figure 10 in Paper I which shows the magnetic field amplitude at the \(\langle\tau_{5000} \rangle\sim1\) plane. Those values need to be multiplied by a factor of \(\sqrt{4\pi}\).

  4. We used the version of the Wittman opacity package ported to Python by Jaime de la Cruz Rodriguez and available at https://github.com/jaimedelacruz/witt/.

References

  • Aschwanden, M.J., Boerner, P., Schrijver, C.J., Malanushenko, A.: 2013, Automated temperature and emission measure analysis of coronal loops and active regions observed with the atmospheric imaging assembly on the solar dynamics observatory (SDO/AIA). Solar Phys. 283, 5. DOI. ADS.

    Article  ADS  Google Scholar 

  • Auchère, F.: 2005, Effect of the H I Ly\(\alpha\) chromospheric flux anisotropy on the total intensity of the resonantly scattered coronal radiation. Astrophys. J. 622, 737. DOI. ADS.

    Article  ADS  Google Scholar 

  • Carlsson, M.: 2008, 3D radiative transfer in stellar atmospheres. Phys. Scr. T 133, 014012. DOI. ADS.

    Article  ADS  Google Scholar 

  • Casini, R., Judge, P.G.: 1999, Spectral lines for polarization measurements of the coronal magnetic field. II. Consistent treatment of the Stokes vector for magnetic-dipole transitions. Astrophys. J. 522, 524. DOI. ADS.

    Article  ADS  Google Scholar 

  • Casini, R., White, S.M., Judge, P.G.: 2017, Magnetic diagnostics of the solar corona: Synthesizing optical and radio techniques. Space Sci. Rev. 210, 145. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cox, A.N.: 2000, Allen’s Astrophysical Quantities. ADS.

    Google Scholar 

  • Criscuoli, S.: 2019, Effects of continuum fudging on non-LTE synthesis of stellar spectra. I. Effects on estimates of UV continua and solar spectral irradiance variability. Astrophys. J. 872, 52. DOI. ADS.

    Article  ADS  Google Scholar 

  • Criscuoli, S., Rempel, M., Haberreiter, M., Pereira, T.M.D., Uitenbroek, H., Fabbian, D.: 2020, Comparing radiative transfer codes and opacity samplings for solar irradiance reconstructions. Solar Phys. 295, 50. DOI. ADS.

    Article  ADS  Google Scholar 

  • Del Zanna, G., Young, P.R.: 2020, Atomic data for plasma spectroscopy: The CHIANTI database, improvements and challenges. Atoms 8, 46. DOI. ADS.

    Article  ADS  Google Scholar 

  • Dere, K.P., Del Zanna, G., Young, P.R., Landi, E., Sutherland, R.S.: 2019, CHIANTI—An atomic database for emission lines. XV. Version 9, improvements for the X-ray satellite lines. Astrophys. J. Suppl. 241, 22. DOI. ADS.

    Article  ADS  Google Scholar 

  • Derouich, M., Badruddin: 2018, Study of the effect of active regions on the scattering polarization in the solar corona. Publ. Astron. Soc. Pac. 130, 034203. DOI. ADS.

    Article  ADS  Google Scholar 

  • Dima, G.I., Schad, T.A.: 2020, Using multi-line spectropolarimetric observations of forbidden emission lines to measure single-point coronal magnetic fields. Astrophys. J. 889, 109. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gibson, S.E., Kucera, T.A., White, S.M., Dove, J.B., Fan, Y., Forland, B.C., Rachmeler, L.A., Downs, C., Reeves, K.K.: 2016, FORWARD: A toolset for multiwavelength coronal magnetometry. Front. Astron. Space Sci. 3, 8. DOI.

    Article  ADS  Google Scholar 

  • Hanle, W.: 1924, Über magnetische Beeinflussung der Polarisation der Resonanzfluoreszenz. Z. Phys. 30, 93. DOI. ADS.

    Article  ADS  Google Scholar 

  • Harris, C.R., Millman, K.J., van der Walt, S.J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del Río, J.F., Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: 2020, Array programming with NumPy. Nature 585, 357. DOI.

    Article  ADS  Google Scholar 

  • Janett, G., Steiner, O., Belluzzi, L.: 2018, Formal solutions for polarized radiative transfer. IV. Numerical performances in practical problems. Astrophys. J. 865, 16. DOI. ADS.

    Article  ADS  Google Scholar 

  • Judge, P.G.: 2007, Spectral lines for polarization measurements of the coronal magnetic field. V. Information content of magnetic dipole lines. Astrophys. J. 662, 677. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kano, R., Trujillo Bueno, J., Winebarger, A., Auchère, F., Narukage, N., Ishikawa, R., Kobayashi, K., Bando, T., Katsukawa, Y., Kubo, M., Ishikawa, S., Giono, G., Hara, H., Suematsu, Y., Shimizu, T., Sakao, T., Tsuneta, S., Ichimoto, K., Goto, M., Belluzzi, L., Štěpán, J., Asensio Ramos, A., Manso Sainz, R., Champey, P., Cirtain, J., De Pontieu, B., Casini, R., Carlsson, M.: 2017, Discovery of scattering polarization in the hydrogen Ly\(\alpha \) line of the solar disk radiation. Astrophys. J. Lett. 839, L10. DOI. ADS.

    Article  ADS  Google Scholar 

  • Khan, A., Landi Degl’Innocenti, E.: 2011, Solar coronal magnetic field diagnostics through polarimetric forward modelling of the Hanle effect. Astron. Astrophys. 532, A70. DOI. ADS.

    Article  ADS  Google Scholar 

  • Khan, A., Belluzzi, L., Landi Degl’Innocenti, E., Fineschi, S., Romoli, M.: 2011, Spectropolarimetric forward modelling of the lines of the Lyman-series using a self-consistent, global, solar coronal model. Astron. Astrophys. 529, A12. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kramar, M., Inhester, B., Solanki, S.K.: 2006, Vector tomography for the coronal magnetic field. I. Longitudinal Zeeman effect measurements. Astron. Astrophys. 456, 665. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kunasz, P., Auer, L.H.: 1988, Short characteristic integration of radiative transfer problems: Formal solution in two-dimensional slabs. J. Quant. Spectrosc. Radiat. Transf. 39, 67. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lam, S.K., Pitrou, A., Seibert, S.: 2015, Numba: A LLVM-based python JIT compiler. In: Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC, LLVM’15, Association for Computing Machinery, New York. ISBN 9781450340052. DOI.

    Chapter  Google Scholar 

  • Landi Degl’Innocenti, E., Landolfi, M.: 2004, Polarization in Spectral Lines 307. DOI. ADS.

    Book  Google Scholar 

  • Landi, E., Hutton, R., Brage, T., Li, W.: 2020, Hinode/EIS measurements of active-region magnetic fields. Astrophys. J. 904, 87. DOI. ADS.

    Article  ADS  Google Scholar 

  • Landi, E., Li, W., Brage, T., Hutton, R.: 2021, Hinode/EIS coronal magnetic field measurements at the onset of a C2 flare. Astrophys. J. 913, 1. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lee, J.: 2007, Radio emissions from solar active regions. Space Sci. Rev. 133, 73. DOI. ADS.

    Article  ADS  Google Scholar 

  • Li, H., Landi Degl’Innocenti, E., Qu, Z.: 2017, Polarization of coronal forbidden lines. Astrophys. J. 838, 69. DOI. ADS.

    Article  ADS  Google Scholar 

  • Li, W., Grumer, J., Yang, Y., Brage, T., Yao, K., Chen, C., Watanabe, T., Jönsson, P., Lundstedt, H., Hutton, R., Zou, Y.: 2015, A novel method to determine magnetic fields in low-density plasma facilitated through accidental degeneracy of quantum states in Fe9+. Astrophys. J. 807, 69. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lin, H., Penn, M.J., Tomczyk, S.: 2000, A new precise measurement of the coronal magnetic field strength. Astrophys. J. Lett. 541, L83. DOI. ADS.

    Article  ADS  Google Scholar 

  • Malanushenko, A., Cheung, M.C.M., DeForest, C.E., Klimchuk, J.A., Rempel, M.: 2021, The coronal veil. arXiv e-prints. arXiv. ADS.

  • Manso Sainz, R., Trujillo Bueno, J.: 2009, In: Berdyugina, S.V., Nagendra, K.N., Ramelli, R. (eds.) A Possible Polarization Mechanism of EUV Coronal Lines, Astronomical Society of the Pacific Conference Series 405, 423. ADS.

    Google Scholar 

  • Mihalas, D.: 1970, Stellar Atmospheres. ADS.

    Google Scholar 

  • Plowman, J.: 2014, Single-point inversion of the coronal magnetic field. Astrophys. J. 792, 23. DOI. ADS.

    Article  ADS  Google Scholar 

  • Rempel, M.: 2017, Extension of the MURaM radiative MHD code for coronal simulations. Astrophys. J. 834, 10. DOI. ADS.

    Article  ADS  Google Scholar 

  • Rimmele, T.R., Warner, M., Keil, S.L., Goode, P.R., Knölker, M., Kuhn, J.R., Rosner, R.R., McMullin, J.P., Casini, R., Lin, H., Wöger, F., von der Lühe, O., Tritschler, A., Davey, A., de Wijn, A., Elmore, D.F., Fehlmann, A., Harrington, D.M., Jaeggli, S.A., Rast, M.P., Schad, T.A., Schmidt, W., Mathioudakis, M., Mickey, D.L., Anan, T., Beck, C., Marshall, H.K., Jeffers, P.F., Oschmann, J.M., Beard, A., Berst, D.C., Cowan, B.A., Craig, S.C., Cross, E., Cummings, B.K., Donnelly, C., de Vanssay, J.-B., Eigenbrot, A.D., Ferayorni, A., Foster, C., Galapon, C.A., Gedrites, C., Gonzales, K., Goodrich, B.D., Gregory, B.S., Guzman, S.S., Guzzo, S., Hegwer, S., Hubbard, R.P., Hubbard, J.R., Johansson, E.M., Johnson, L.C., Liang, C., Liang, M., McQuillen, I., Mayer, C., Newman, K., Onodera, B., Phelps, L., Puentes, M.M., Richards, C., Rimmele, L.M., Sekulic, P., Shimko, S.R., Simison, B.E., Smith, B., Starman, E., Sueoka, S.R., Summers, R.T., Szabo, A., Szabo, L., Wampler, S.B., Williams, T.R., White, C.: 2020, The Daniel K. Inouye solar telescope - observatory overview. Solar Phys. 295, 172. DOI. ADS.

    Article  ADS  Google Scholar 

  • Sahal-Brechot, S., Malinovsky, M., Bommier, V.: 1986, The polarization of the O VI 1032 Å line as a probe for measuring the coronal vector magnetic field via the Hanle effect. Astron. Astrophys. 168, 284. ADS.

    ADS  Google Scholar 

  • Schad, T.A.: 2014, On the collective magnetic field strength and vector structure of dark umbral cores measured by the hinode spectropolarimeter. Solar Phys. 289, 1477. DOI. ADS.

    Article  ADS  Google Scholar 

  • Schad, T., Dima, G.: 2020, Forward synthesis of polarized emission in target DKIST coronal lines applied to 3D MURaM coronal simulations. Solar Phys. 295, 98. DOI. ADS.

    Article  ADS  Google Scholar 

  • Socas-Navarro, H., de la Cruz Rodríguez, J., Asensio Ramos, A., Trujillo Bueno, J., Ruiz Cobo, B.: 2015, An open-source, massively parallel code for non-LTE synthesis and inversion of spectral lines and Zeeman-induced Stokes profiles. Astron. Astrophys. 577, A7. DOI. ADS.

    Article  Google Scholar 

  • Tomczyk, S., McIntosh, S.W., Keil, S.L., Judge, P.G., Schad, T., Seeley, D.H., Edmondson, J.: 2007, Alfvén waves in the solar corona. Science 317, 1192. DOI. ADS.

    Article  ADS  Google Scholar 

  • Trujillo Bueno, J., Landi Degl’Innocenti, E., Belluzzi, L.: 2017, The physics and diagnostic potential of ultraviolet spectropolarimetry. Space Sci. Rev. 210, 183. DOI. ADS.

    Article  ADS  Google Scholar 

  • Uitenbroek, H.: 2001, Multilevel radiative transfer with partial frequency redistribution. Astrophys. J. 557, 389. DOI. ADS.

    Article  ADS  Google Scholar 

  • Van Vleck, J.H.: 1925, On the quantum theory of the polarization of resonance radiation in magnetic fields. Proc. Natl. Acad. Sci. USA 11, 612. DOI. ADS.

    Article  ADS  MATH  Google Scholar 

  • Vögler, A., Shelyag, S., Schüssler, M., Cattaneo, F., Emonet, T., Linde, T.: 2005, Simulations of magneto-convection in the solar photosphere. Equations, methods, and results of the MURaM code. Astron. Astrophys. 429, 335. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wittmann, A.: 1974, Computation and observation of Zeeman multiplet polarization in Fraunhofer lines. II: Computation of Stokes parameter profiles. Solar Phys. 35, 11. DOI. ADS.

    Article  ADS  Google Scholar 

  • Xie, H., Madjarska, M.S., Li, B., Huang, Z., Xia, L., Wiegelmann, T., Fu, H., Mou, C.: 2017, The plasma parameters and geometry of cool and warm active region loops. Astrophys. J. 842, 38. DOI. ADS.

    Article  ADS  Google Scholar 

  • Yang, Z., Bethge, C., Tian, H., Tomczyk, S., Morton, R., Del Zanna, G., McIntosh, S.W., Karak, B.B., Gibson, S., Samanta, T., He, J., Chen, Y., Wang, L.: 2020, Global maps of the magnetic field in the solar corona. Science 369, 694. DOI. ADS.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The National Solar Observatory (NSO) is operated by the Association of Universities for Research in Astronomy, Inc. (AURA), under cooperative agreement with the National Science Foundation. The authors extend our thanks to Matthias Rempel for providing and helping use the MURaM simulation and to Serena Criscuoli for providing the RH generated opacities. Thanks also to Jaime de la Cruz Rodriguez for making Python versions of the Wittmann opacity routines publicly available. Chianti is a collaborative project involving George Mason University, the University of Michigan (USA), University of Cambridge (UK) and NASA Goddard Space Flight Center (USA). This research has made use of NASA’s Astrophysics Data System.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Schad.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: pyCELP: Software Updates and Improvements

Appendix: pyCELP: Software Updates and Improvements

Schad and Dima (2020) introduced a code referred to as pyCLE, which is capable of multilevel atomic density calculations for the purpose of calculating the atomic level polarization of forbidden emission lines in the no-coherence hypothesis. This code has since been reformulated and updated from a Fortran code wrapped in Python to a Python-only code. The new code is called pyCELP for the python package for Coronal Emission Line Polarization. It provides an extensible class for model ion calculations and takes advantage of the Numba package for just-in-time compilation (Lam, Pitrou, and Seibert, 2015). By pre-computing all static factors in the statistical equilibrium equations, we have significantly accelerated the code. It is now primarily limited in execution speed by the time required to solve the system of linear equations using the libraries available in the Numpy package (Harris et al., 2020). The code is publicly available at https://github.com/tschad/pycelp.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schad, T., Dima, G. Polarized Forbidden Coronal Line Emission in the Presence of Active Regions. Sol Phys 296, 166 (2021). https://doi.org/10.1007/s11207-021-01917-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-021-01917-y

Keywords

Navigation