Skip to main content
Log in

Flare Index Prediction with Machine Learning Algorithms

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Solar flares are one of the most important sources of disastrous space weather events, leading to negative effects on spacecrafts and living organisms. It is very important to predict solar flares to minimize the potential losses. In this paper, we use three different machine learning algorithms: K-Nearest Neighbors (KNN), Random Forest (RF), and XGBoost (XGB) to predict the total flare index \(\text{T}_{\mathrm{flare}}\) and the maximum flare index \(\text{M}_{\mathrm{flare}}\) of an active region (AR) within the subsequent of 24, 48, and 72 hrs. First, we selected 54514 vector magnetograms of 129 ARs on the visible solar hemisphere in solar cycle 24 whose maximum sunspot groups’ area was larger than 400 μh. Then the following four magnetic parameters of each magnetogram were calculated: 1) the total magnetic flux \(|\Phi _{\mathrm{tot}}|\), 2) the total photospheric free magnetic energy density \(\text{E}_{\mathrm{free}}\), 3) the gradient-weighted integral length of the neutral line with horizontal magnetic gradient of line-of-sight magnetic field larger than \(0.1~\text{G}\,\text{km}^{\mathrm{-1}}\) (\(\text{WL}_{\mathrm{SG}}\)), and 4) the area with magnetic shear angle larger than \(40^{\circ }\) (\(\text{A}_{\Psi }\)), as well as \(\text{T}_{\mathrm{flare}}\) and \(\text{M}_{\mathrm{flare}}\) corresponding to each magnetogram. Afterward, we split samples randomly into training (85% of the whole data) and testing (15%) data sets. After hyperparameter tuning and model construction we found that RF is an optimal algorithm for the prediction task and that the coefficients of determination (\(\text{R}^{\mathrm{2}}\)) of test data set via the majority of RF models are beyond 0.97. In addition, the feature importance of RF and XGB models indicates that \(|\Phi_{\mathrm{tot}}|\) and \(\text{E}_{\mathrm{free}}\) are two optimal parameters to predict both \(\text{T}_{\mathrm{flare}}\) and \(\text{M}_{\mathrm{flare}}\), and \(|\Phi _{\mathrm{tot}}|\) and \(\text{E}_{\mathrm{free}}\) are the best parameters for \(\text{M}_{\mathrm{flare}}\) and \(\text{T}_{\mathrm{flare}}\), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Ahmed, O.W., Qahwaji, R., Colak, T., Higgins, P.A., Gallagher, P.T., Bloomfield, D.S.: 2013, Solar flare prediction using advanced feature extraction, machine learning, and feature selection. Solar Phys. 283(1), 157. DOI. ADS.

    Article  ADS  Google Scholar 

  • Baker, D.N., McPherron, R.L., Cayton, T.E., Klebesadel, R.W.: 1990, Linear prediction filter analysis of relativistic electron properties at \(6.6~\text{R}_{E}\). J. Geophys. Res. 95(A9), 15133. DOI. ADS.

    Article  ADS  Google Scholar 

  • Benvenuto, F., Piana, M., Campi, C., Massone, A.M.: 2018, A hybrid supervised/unsupervised machine learning approach to solar flare prediction. Astrophys. J. 853(1), 90. DOI. ADS.

    Article  ADS  Google Scholar 

  • Bhattacharjee, S., Alshehhi, R., Dhuri, D.B., Hanasoge, S.M.: 2020, Supervised convolutional neural networks for classification of flaring and nonflaring active regions using line-of-sight magnetograms. Astrophys. J. 898, 98. DOI. ADS.

    Article  ADS  Google Scholar 

  • Bobra, M.G., Couvidat, S.: 2015, Solar flare prediction using SDO/HMI vector magnetic field data with a machine-learning algorithm. Astrophys. J. 798(2), 135. DOI. ADS.

    Article  ADS  Google Scholar 

  • Bobra, M.G., Sun, X., Hoeksema, J.T., Turmon, M., Liu, Y., Hayashi, K., Barnes, G., Leka, K.D.: 2014, The Helioseismic and Magnetic Imager (HMI) vector magnetic field pipeline: SHARPs – space-weather HMI active region patches. Solar Phys. 289(9), 3549. DOI. ADS.

    Article  ADS  Google Scholar 

  • Breiman, L.: 2001, Random forests. Mach. Learn. 45(1), 5–32. DOI.

    Article  MATH  Google Scholar 

  • Camporeale, E.: 2019, The challenge of machine learning in space weather: nowcasting and forecasting. Space Weather 17(8), 1166. DOI.

    Article  ADS  Google Scholar 

  • Castellanos Durán, J.S., Kleint, L., Calvo-Mozo, B.: 2018, A statistical study of photospheric magnetic field changes during 75 solar flares. Astrophys. J. 852(1), 25. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chen, T.: 2016, xgboost, GitHub.

  • Chen, T., Guestrin, C.: 2016, Xgboost. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 9781450342322. DOI.

  • Chen, A.Q., Wang, J.X.: 2012, Quantifying solar superactive regions with vector magnetic field observations. Astron. Astrophys. 543, A49. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chen, A., Wang, J.: 2016, Super-active regions in solar cycle 24. In: Kosovichev, A.G., Hawley, S.L., Heinzel, P. (eds.) Solar and Stellar Flares and Their Effects on Planets 320, 309. DOI. ADS.

    Chapter  Google Scholar 

  • Chen, A., Wang, J.: 2020, On the possibility of predicting flare index and CME velocity using vector magnetograms. Sci. China 63(6), 265912. DOI. ADS.

    Article  Google Scholar 

  • Chen, Y., Manchester, W.B., Hero, A.O., Toth, G., DuFumier, B., Zhou, T., Wang, X., Zhu, H., Sun, Z., Gombosi, T.I.: 2019, Identifying solar flare precursors using time series of SDO/HMI images and SHARP parameters. Space Weather 17, 1404. DOI. ADS.

    Article  ADS  Google Scholar 

  • Choudhary, D.P., Ambastha, A., Ai, G.: 1998, Emerging flux and X-class flares in NOAA 6555. Solar Phys. 179(1), 133. DOI. ADS.

    Article  ADS  Google Scholar 

  • Colak, T., Qahwaji, R.: 2009, Automated solar activity prediction: a hybrid computer platform using machine learning and solar imaging for automated prediction of solar flares. Space Weather 7(6), S06001. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cover, T., Hart, P.: 1967, Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1), 21. DOI.

    Article  MATH  Google Scholar 

  • Falconer, D.A., Moore, R.L., Gary, G.A.: 2008, Magnetogram measures of total nonpotentiality for prediction of solar coronal mass ejections from active regions of any degree of magnetic complexity. Astrophys. J. 689(2), 1433. DOI. ADS.

    Article  ADS  Google Scholar 

  • Falconer, D.A., Moore, R.L., Gary, G.A., Adams, M.: 2009, The “main sequence” of explosive solar active regions: discovery and interpretation. Astrophys. J. 700(2), L166. DOI. ADS.

    Article  ADS  Google Scholar 

  • Florios, K., Kontogiannis, I., Park, S.-H., Guerra, J.A., Benvenuto, F., Bloomfield, D.S., Georgoulis, M.K.: 2018, Forecasting solar flares using magnetogram-based predictors and machine learning. Solar Phys. 293(2), 28. DOI. ADS.

    Article  ADS  Google Scholar 

  • Fontenla, J.M., Ambastha, A., Kalman, B., Csepura, G.: 1995, The magnetic evolution of AR 6555 which LED to two impulsive, relatively compact, X-type flares. Astrophys. J. 440, 894. DOI. ADS.

    Article  ADS  Google Scholar 

  • Georgoulis, M.K.: 2008, Magnetic complexity in eruptive solar active regions and associated eruption parameters. Geophys. Res. Lett. 35(6), L06S02. DOI. ADS.

    Article  Google Scholar 

  • Goodfellow, I., Bengio, Y., Courville, A.: 2016, Deep Learning, MIT Press, Cambridge.

    MATH  Google Scholar 

  • Hagyard, M.J., Smith, J., Teuber, D., West, E.A.: 1984, A quantitative study relating observed shear in photospheric magnetic fields to repeated flaring. Solar Phys. 91(1), 115. DOI. ADS.

    Article  ADS  Google Scholar 

  • Huang, X., Wang, H., Xu, L., Liu, J., Li, R., Dai, X.: 2018, Deep learning based solar flare forecasting model. I. Results for line-of-sight magnetograms. Astrophys. J. 856(1), 7. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ishii, T.T., Kurokawa, H., Takeuchi, T.T.: 1998, Emergence of a twisted magnetic flux bundle as a source of strong flare activity. Astrophys. J. 499(2), 898. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ji, E.-Y., Moon, Y.-J., Park, J., Lee, J.-Y., Lee, D.-H.: 2013, Comparison of neural network and support vector machine methods for Kp forecasting. J. Geophys. Res. 118(8), 5109. DOI. ADS.

    Article  Google Scholar 

  • Jiao, Z., Sun, H., Wang, X., Manchester, W., Gombosi, T., Hero, A., Chen, Y.: 2020, Solar flare intensity prediction with machine learning models. Space Weather 18, e2020SW002440. DOI. ADS.

    Article  ADS  Google Scholar 

  • Leka, K.D., Barnes, G.: 2003, Photospheric magnetic field properties of flaring versus flare-quiet active regions. II. Discriminant analysis. Astrophys. J. 595(2), 1296. DOI. ADS.

    Article  ADS  Google Scholar 

  • Leka, K.D., Barnes, G.: 2007, Photospheric magnetic field properties of flaring versus flare-quiet active regions. IV. A statistically significant sample. Astrophys. J. 656(2), 1173. DOI. ADS.

    Article  ADS  Google Scholar 

  • Li, R., Zhu, J.: 2013, Solar flare forecasting based on sequential sunspot data. Res. Astron. Astrophys. 13(9), 1118. DOI. ADS.

    Article  ADS  Google Scholar 

  • Li, H., Sakurai, T., Ichimoto, K., UeNo, S.: 2000, Magnetic field evolution leading to solar flares I. Cases with low magnetic shear and flux emergence. Astron. Soc. Japan 52, 465. DOI. ADS.

    Article  ADS  Google Scholar 

  • Li, R., Wang, H.-N., He, H., Cui, Y.-M., Du, Z.-L.: 2007, Support vector machine combined with K-nearest neighbors for solar flare forecasting. Chin. J. Astron. Astrophys. 7(3), 441. DOI. ADS.

    Article  ADS  Google Scholar 

  • Li, X., Zheng, Y., Wang, X., Wang, L.: 2020, Predicting solar flares using a novel deep convolutional neural network. Astrophys. J. 891, 10. DOI. ADS.

    Article  ADS  Google Scholar 

  • Liu, Y., Hoeksema, J.T., Scherrer, P.H., Schou, J., Couvidat, S., Bush, R.I., Duvall, T.L., Hayashi, K., Sun, X., Zhao, X.: 2012, Comparison of line-of-sight magnetograms taken by the Solar Dynamics Observatory/Helioseismic and Magnetic Imager and Solar and Heliospheric Observatory/Michelson Doppler Imager. Solar Phys. 279(1), 295. DOI. ADS.

    Article  ADS  Google Scholar 

  • Liu, C., Deng, N., Wang, J.T.L., Wang, H.: 2017, Predicting solar flares using SDO/HMI vector magnetic data products and the random forest algorithm. Astrophys. J. 843(2), 104. DOI. ADS.

    Article  ADS  Google Scholar 

  • Liu, H., Liu, C., Wang, J.T.L., Wang, H.: 2019, Predicting solar flares using a long short-term memory network. Astrophys. J. 877, 121. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lü, Y., Wang, J., Wang, H.: 1993, Shear angle of magnetic fields. Solar Phys. 148(1), 119. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mason, J.P., Hoeksema, J.T.: 2010, Testing automated solar flare forecasting with 13 years of Michelson Doppler Imager magnetograms. Astrophys. J. 723(1), 634. DOI. ADS.

    Article  ADS  Google Scholar 

  • Nagem, T.A.M.H., Qahwaji, R., Ipson, S., Wang, Z., Al-Waisy, A.S.: 2018, Deep learning technology for predicting solar flares from (geostationary operational environmental satellite) data. Int. J. Adv. Comput. Sci. Appl. 9(1), 492. DOI.

    Article  Google Scholar 

  • Nishizuka, N., Sugiura, K., Kubo, Y., Den, M., Watari, S., Ishii, M.: 2017, Solar flare prediction model with three machine-learning algorithms using ultraviolet brightening and vector magnetograms. Astrophys. J. 835(2), 156. DOI. ADS.

    Article  ADS  Google Scholar 

  • Nishizuka, N., Sugiura, K., Kubo, Y., Den, M., Ishii, M.: 2018a, Deep Flare Net (DeFN) model for solar flare prediction. Astrophys. J. 858(2), 113. DOI. ADS.

    Article  ADS  Google Scholar 

  • Nishizuka, N., Sugiura, K., Kubo, Y., Den, M., Ishii, M.: 2018b, Deep Flare Net (DeFN) model for solar flare prediction. Astrophys. J. 858(2), 113. DOI. ADS.

    Article  ADS  Google Scholar 

  • Nitta, N., van Driel-Gesztelyi, L., Leka, K.D., Shibata, K.: 1996, Emerging flux and flares in NOAA 7260. Adv. Space Res. 17(4–5), 201. DOI. ADS.

    Article  ADS  Google Scholar 

  • Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: 2011, Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825.

    MathSciNet  MATH  Google Scholar 

  • Qahwaji, R., Colak, T.: 2007, Automatic short-term solar flare prediction using machine learning and sunspot associations. Solar Phys. 241(1), 195. DOI. ADS.

    Article  ADS  Google Scholar 

  • Romano, P., Zuccarello, F.: 2007, Photospheric magnetic evolution of super active regions. Astron. Astrophys. 474(2), 633. DOI. ADS.

    Article  ADS  Google Scholar 

  • Schou, J., Scherrer, P.H., Bush, R.I., Wachter, R., Couvidat, S., Rabello-Soares, M.C., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Akin, D.J., Allard, B.A., Miles, J.W., Rairden, R., Shine, R.A., Tarbell, T.D., Title, A.M., Wolfson, C.J., Elmore, D.F., Norton, A.A., Tomczyk, S.: 2012, Design and ground calibration of the Helioseismic and Magnetic Imager (HMI) instrument on the Solar Dynamics Observatory (SDO). Solar Phys. 275(1-2), 229. DOI. ADS.

    Article  ADS  Google Scholar 

  • Schrijver, C.J.: 2007, A characteristic magnetic field pattern associated with all major solar flares and its use in flare forecasting. Astrophys. J. 655(2), L117. DOI. ADS.

    Article  ADS  Google Scholar 

  • Shi, Z., Wang, J.: 1994, Delta-sunspots and X-class flares. Solar Phys. 149(1), 105. DOI. ADS.

    Article  ADS  Google Scholar 

  • Song, H., Tan, C., Jing, J., Wang, H., Yurchyshyn, V., Abramenko, V.: 2009, Statistical assessment of photospheric magnetic features in imminent solar flare predictions. Solar Phys. 254(1), 101. DOI. ADS.

    Article  ADS  Google Scholar 

  • Tian, L., Liu, Y., Wang, J.: 2002, The most violent super-active regions in the 22nd and 23rd cycles. Solar Phys. 209(2), 361. DOI. ADS.

    Article  ADS  Google Scholar 

  • Toriumi, S., Schrijver, C.J., Harra, L.K., Hudson, H., Nagashima, K.: 2017, Magnetic properties of solar active regions that govern large solar flares and eruptions. Astrophys. J. 834(1), 56. DOI. ADS.

    Article  ADS  Google Scholar 

  • Vasantharaju, N., Vemareddy, P., Ravindra, B., Doddamani, V.H.: 2018, Statistical study of magnetic nonpotential measures in confined and eruptive flares. Astrophys. J. 860(1), 58. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wang, J.: 1999, Vector magnetic fields and magnetic activity on the Sun. Fundam. Cosm. Phys. 20(3), 251. ADS.

    ADS  Google Scholar 

  • Wang, S., Liu, C., Wang, H.: 2012, The relationship between the sudden change of the Lorentz force and the magnitude of associated flares. Astrophys. J. 757(1), L5. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wang, J., Shi, Z.: 1993, The flare-associated magnetic changes in an active region – part two. Solar Phys. 143(1), 119. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wang, Y., Zhang, J.: 2008, A statistical study of solar active regions that produce extremely fast coronal mass ejections. Astrophys. J. 680(2), 1516. DOI. ADS.

    Article  ADS  MathSciNet  Google Scholar 

  • Wang, J., Shi, Z., Wang, H., Lü, Y.: 1996, Flares and the magnetic nonpotentiality. Astrophys. J. 456, 861. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wang, H., Spirock, T.J., Qiu, J., Ji, H., Yurchyshyn, V., Moon, Y.-J., Denker, C., Goode, P.R.: 2002, Rapid changes of magnetic fields associated with six X-class flares. Astrophys. J. 576(1), 497. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wang, H.-M., Song, H., Jing, J., Yurchyshyn, V., Deng, Y.-Y., Zhang, H.-Q., Falconer, D., Li, J.: 2006, The relationship between magnetic gradient and magnetic shear in five super active regions producing great flares. Chin. J. Astron. Astrophys. 6(4), 477. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wang, H.N., Cui, Y.M., Li, R., Zhang, L.Y., Han, H.: 2008, Solar flare forecasting model supported with artificial neural network techniques. Adv. Space Res. 42(9), 1464. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wang, S., Liu, C., Liu, R., Deng, N., Liu, Y., Wang, H.: 2012, Response of the photospheric magnetic field to the X2.2 flare on 2011 February 15. Astrophys. J. 745(2), L17. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wang, J., Liu, S., Ao, X., Zhang, Y., Wang, T., Liu, Y.: 2019, Parameters derived from the SDO/HMI vector magnetic field data: potential to improve machine-learning-based solar flare prediction models. Astrophys. J. 884(2), 175. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wang, X., Chen, Y., Toth, G., Manchester, W.B., Gombosi, T.I., Hero, A.O., Jiao, Z.: 2020, Predicting solar flares with machine learning: investigating solar cycle dependence. Astrophys. J. 895, 3. DOI. ADS.

    Article  ADS  Google Scholar 

  • Yuan, Y., Shih, F.Y., Jing, J., Wang, H.-M.: 2010, Automated flare forecasting using a statistical learning technique. Res. Astron. Astrophys. 10(8), 785. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zhang, H., Ai, G., Yan, X., Li, W., Liu, Y.: 1994, Evolution of vector magnetic field and white-light flares in a solar active region (NOAA 6659) in 1991 June. Astrophys. J. 423, 828. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zheng, Y., Li, X., Wang, X.: 2019, Solar flare prediction with the hybrid deep convolutional neural network. Astrophys. J. 885(1), 73. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zirin, H., Tanaka, K.: 1973, The flares of August 1972. Solar Phys. 32(1), 173. DOI. ADS.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank the SDO/HMI science team for the processed vector magnetograms and Space Weather Prediction Center for solar region summary, as well as solar and geophysical activity summary. The research is supported by the Strategic Priority Program on Space Science, Chinese Academy of Sciences, Grant No. XDA15350203, and Key Research Program of Frontier Sciences CAS, Grant No. ZDBS-LY-SLH013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Ye.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, A., Ye, Q. & Wang, J. Flare Index Prediction with Machine Learning Algorithms. Sol Phys 296, 150 (2021). https://doi.org/10.1007/s11207-021-01895-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-021-01895-1

Keywords

Navigation