Altschuler, M.D., Newkirk, G.: 1969, Magnetic fields and the structure of the solar corona. Solar Phys. 9, 131. DOI.
ADS
Article
Google Scholar
Arden, W.M., Norton, A.A., Sun, X.: 2014, A “breathing” source surface for cycles 23 and 24. J. Geophys. Res. Space Phys. 119, 1476. DOI.
ADS
Article
Google Scholar
Asvestari, E., Heinemann, S.G., Temmer, M., Pomoell, J., Kilpua, E., Magdalenic, J., Poedts, S.: 2019, Reconstructing coronal hole areas with EUHFORIA and adapted WSA model: optimizing the model parameters. J. Geophys. Res. Space Phys. 124, 8280. DOI.
ADS
Article
Google Scholar
Attrill, G., Nakwacki, M.S., Harra, L.K., Van Driel-Gesztelyi, L., Mandrini, C.H., Dasso, S., Wang, J.: 2006, Using the evolution of coronal dimming regions to probe the global magnetic field topology. Solar Phys. 238, 117. DOI.
ADS
Article
Google Scholar
Badman, S.T., Bale, S.D., Oliveros, J.C.M., Panasenco, O., Velli, M., Stansby, D., Buitrago-Casas, J.C., Réville, V., Bonnell, J.W., Case, A.W., de Wit, T.D., Goetz, K., Harvey, P.R., Kasper, J.C., Korreck, K.E., Larson, D.E., Livi, R., MacDowall, R.J., Malaspina, D.M., Pulupa, M., Stevens, M.L., Whittlesey, P.L.: 2020, Magnetic connectivity of the ecliptic plane within 0.5 au: potential field source surface modeling of the first Parker Solar Probe encounter. Astrophys. J. Suppl. 246, 23. DOI.
ADS
Article
Google Scholar
Baker, D., van Driel-Gesztelyi, L., Attrill, G.D.R.: 2007, Evidence for interchange reconnection between a coronal hole and an adjacent emerging flux region. Astron. Nachr. 328, 773. DOI.
ADS
Article
Google Scholar
Baker, D., Rouillard, A.P., van Driel-Gesztelyi, L., Démoulin, P., Harra, L.K., Lavraud, B., Davies, J.A., Opitz, A., Luhmann, J.G., Sauvaud, J.-A., Galvin, A.B.: 2009, Signatures of interchange reconnection: STEREO, ACE and Hinode observations combined. Ann. Geophys. 27, 3883. DOI.
ADS
Article
Google Scholar
The SunPy Community, Barnes, a.W.T., Bobra, M.G., Christe, S.D., Freij, N., Hayes, L.A., Ireland, J., Mumford, S., Perez-Suarez, D., Ryan, D.F., Shih, A.Y., Chanda, P., Glogowski, K., Hewett, R., Hughitt, V.K., Hill, A., Hiware, K., Inglis, A., Kirk, M.S.F., Konge, S., Mason, J.P., Maloney, S.A., Murray, S.A., Panda, A., Park, J., Pereira, T.M.D., Reardon, K., Savage, S., Sip\Hocz, B.M., Stansby, D., Jain, Y., Taylor, G., Yadav, T., Rajul, Dang, T.K.: 2020, The SunPy project: open source development and status of the version 1.0 Core package. Astrophys. J. 890, 68. DOI.
ADS
Article
Google Scholar
Brooks, D.H., Winebarger, A.R., Savage, S., Warren, H.P., Pontieu, B.D., Peter, H., Cirtain, J.W., Golub, L., Kobayashi, K., McIntosh, S.W., McKenzie, D., Morton, R., Rachmeler, L., Testa, P., Tiwari, S., Walsh, R.: 2020, The drivers of active region outflows into the slow solar wind. Astrophys. J. 894, 144. DOI.
ADS
Article
Google Scholar
Carrington, R.C.: 1858, On the distribution of the solar spots in latitudes since the beginning of the year 1854, with a map. Mon. Not. Roy. Astron. Soc. 19, 1. DOI.
ADS
Article
Google Scholar
Cheung, M.C.M., van Driel-Gesztelyi, L., Martínez Pillet, V., Thompson, M.J.: 2017, The life cycle of active region magnetic fields. Space Sci. Rev. 210, 317. DOI.
ADS
Article
Google Scholar
Clark, R., Harvey, J., Hill, F., Toner, C.: 2003, GONG Magnetogram Zero-Point Correction Status 34, 08.03. ADS.
Cohen, O., Attrill, G.D.R., Manchester, W.B. IV, Wills-Davey, M.J.: 2009, Numerical simulation of an EUV coronal wave based on the 2009 February 13 CME event observed by STEREO. Astrophys. J. 705, 587. DOI.
ADS
Article
Google Scholar
Demidov, M.L., Golubeva, E.M., Balthasar, H., Staude, J., Grigoryev, V.M.: 2008, Comparison of solar magnetic fields measured at different observatories: peculiar strength ratio distributions across the disk. Solar Phys. 250, 279. DOI.
ADS
Article
Google Scholar
Fox, N.J., Velli, M.C., Bale, S.D., Decker, R., Driesman, A., Howard, R.A., Kasper, J.C., Kinnison, J., Kusterer, M., Lario, D., Lockwood, M.K., McComas, D.J., Raouafi, N.E., Szabo, A.: 2016, The Solar Probe Plus mission: humanity’s first visit to our star. Space Sci. Rev. 204, 7. DOI.
ADS
Article
Google Scholar
Fu, H., Li, B., Li, X., Huang, Z., Mou, C., Jiao, F., Xia, L.: 2015, Coronal sources and in situ properties of the solar winds sampled by ACE during 1999 – 2008. Solar Phys. 290, 1399. DOI.
ADS
Article
Google Scholar
Golubeva, E.M., Mordvinov, A.V.: 2017, Rearrangements of open magnetic flux and formation of polar coronal holes in cycle 24. Solar Phys. 292, 175. DOI.
ADS
Article
Google Scholar
Gopalswamy, N., Yashiro, S., Michalek, G., Stenborg, G., Vourlidas, A., Freeland, S., Howard, R.: 2009, The SOHO/LASCO CME catalog. Earth Moon Planets 104, 295. DOI.
ADS
Article
Google Scholar
Harvey, J.W., Hill, F., Hubbard, R.P., Kennedy, J.R., Leibacher, J.W., Pintar, J.A., Gilman, P.A., Noyes, R.W., Title, A.M., Toomre, J., Ulrich, R.K., Bhatnagar, A., Kennewell, J.A., Marquette, W., Patrón, J., Saá, O., Yasukawa, E.: 1996, The Global Oscillation Network Group (GONG) project. Science 272, 1284. Chap. Articles. DOI.
ADS
Article
Google Scholar
Harvey, J., Giampapa, M., Henney, C., Jones, H., Keller, C.: 2003, First results from SOLIS. AGU Fall Meet. Abstr. 42, SH42B. ADS.
Google Scholar
Hess Webber, S.A., Karna, N., Pesnell, W.D., Kirk, M.S.: 2014, Areas of polar coronal holes from 1996 through 2010. Solar Phys. 289, 4047. DOI.
ADS
Article
Google Scholar
Hewins, I.M., Gibson, S.E., Webb, D.F., McFadden, R.H., Kuchar, T.A., Emery, B.A., McIntosh, S.W.: 2020, The evolution of coronal holes over three solar cycles using the McIntosh archive. Solar Phys. 295, 161. DOI.
ADS
Article
Google Scholar
Higginson, A.K., Antiochos, S.K., DeVore, C.R., Wyper, P.F., Zurbuchen, T.H.: 2017, Dynamics of coronal hole boundaries. Astrophys. J. 837, 113. DOI.
ADS
Article
Google Scholar
Hoeksema, J.T., Wilcox, J.M., Scherrer, P.H.: 1983, The structure of the heliospheric current sheet: 1978 – 1982. J. Geophys. Res. Space Phys. 88, 9910. DOI.
ADS
Article
Google Scholar
Hunter, J.D.: 2007, Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90. DOI.
Article
Google Scholar
Jones, H.P., Ceja, J.A.: 2001, Preliminary comparison of magnetograms from KPVT/SPM, SOHO/MDI and GONG+. In: Sigwarth, M. (ed.) Advanced Solar Polarimetry – Theory, Observation, and Instrumentation, Astronomical Society of the Pacific Conference Series 236, 87. ADS.
Google Scholar
Keller, C.U., NSO Staff: 1998, SOLIS—a modern facility for synoptic solar observations. 154, 636. ADS.
Kong, D.F., Pan, G.M., Yan, X.L., Wang, J.C., Li, Q.L.: 2018, Observational evidence of interchange reconnection between a solar coronal hole and a small emerging active region. Astrophys. J. 863, L22. DOI.
ADS
Article
Google Scholar
Lee, C.O., Luhmann, J.G., Hoeksema, J.T., Sun, X., Arge, C.N., de Pater, I.: 2011, Coronal field opens at lower height during the solar cycles 22 and 23 minimum periods: IMF comparison suggests the source surface should be lowered. Solar Phys. 269, 367. DOI.
ADS
Article
Google Scholar
Leighton, R.B.: 1964, Transport of magnetic fields on the Sun. Astrophys. J. 140, 1547. DOI.
ADS
Article
MATH
Google Scholar
Liu, Y., Hoeksema, J.T., Scherrer, P.H., Schou, J., Couvidat, S., Bush, R.I., Duvall, T.L., Hayashi, K., Sun, X., Zhao, X.: 2012, Comparison of line-of-sight magnetograms taken by the Solar Dynamics Observatory/Helioseismic and Magnetic Imager and Solar and Heliospheric Observatory/Michelson Doppler Imager. Solar Phys. 279, 295. DOI.
ADS
Article
Google Scholar
Livingston, W.C., Harvey, J., Pierce, A.K., Schrage, D., Gillespie, B., Simmons, J., Slaughter, C.: 1976, Kitt peak 60-cm vacuum telescope. Appl. Opt. 15, 33. DOI.
ADS
Article
Google Scholar
Lockwood, M., Owens, M.: 2009, The accuracy of using the Ulysses result of the spatial invariance of the radial heliospheric field to compute the open solar flux. Astrophys. J. 701, 964. DOI.
ADS
Article
Google Scholar
Lowder, C., Yeates, A.: 2017, Magnetic flux rope identification and characterization from observationally driven solar coronal models. Astrophys. J. 846, 106. DOI.
ADS
Article
Google Scholar
Ma, L., Qu, Z.-Q., Yan, X.-L., Xue, Z.-K.: 2014, Interchange reconnection between an active region and a coronal hole. Res. Astron. Astrophys. 14, 221. DOI.
ADS
Article
Google Scholar
Macneil, A.R., Owen, C.J., Baker, D., Brooks, D.H., Harra, L.K., Long, D.M., Wicks, R.T.: 2019, Active region modulation of coronal hole solar wind. Astrophys. J. 887, 146. DOI.
ADS
Article
Google Scholar
Maunder, E.W.: 1922, The Sun and sun-spots, 1820 – 1920. Mon. Not. Roy. Astron. Soc. 82, 534. DOI.
ADS
Article
Google Scholar
McComas, D.J., Angold, N., Elliott, H.A., Livadiotis, G., Schwadron, N.A., Skoug, R.M., Smith, C.W.: 2013, Weakest solar wind of the space age and the current “mini” solar maximum. Astrophys. J. 779, 2. DOI.
ADS
Article
Google Scholar
Mishra, W., Srivastava, N., Wang, Y., Mirtoshev, Z., Zhang, J., Liu, R.: 2019, Mass loss via solar wind and coronal mass ejections during solar cycles 23 and 24. Mon. Not. Roy. Astron. Soc. 486, 4671. DOI.
ADS
Article
Google Scholar
Müller, D., Cyr, O.C.S., Zouganelis, I., Gilbert, H.R., Marsden, R., Nieves-Chinchilla, T., Antonucci, E., Auchère, F., Berghmans, D., Horbury, T.S., Howard, R.A., Krucker, S., Maksimovic, M., Owen, C.J., Rochus, P., Rodriguez-Pacheco, J., Romoli, M., Solanki, S.K., Bruno, R., Carlsson, M., Fludra, A., Harra, L., Hassler, D.M., Livi, S., Louarn, P., Peter, H., Schühle, U., Teriaca, L., Iniesta, J.C.d.T., Wimmer-Schweingruber, R.F., Marsch, E., Velli, M., Groof, A.D., Walsh, A., Williams, D.: 2020, The Solar Orbiter mission - science overview. Astron. Astrophys. 642, A1. DOI.
Article
Google Scholar
Neugebauer, M., Liewer, P.C., Smith, E.J., Skoug, R.M., Zurbuchen, T.H.: 2002, Sources of the solar wind at solar activity maximum. J. Geophys. Res. Space Phys. 107, SSH 13. DOI.
Article
Google Scholar
Owens, M., Lockwood, M., Macneil, A., Stansby, D.: 2020, Signatures of coronal loop opening via interchange reconnection in the slow solar wind at 1 AU. Solar Phys. 295, 37. DOI.
ADS
Article
Google Scholar
Petrie, G.J.D., Haislmaier, K.J.: 2013, Low-latitude coronal holes, decaying active regions, and global coronal magnetic structure. Astrophys. J. 775, 100. DOI.
ADS
Article
Google Scholar
Pietarila, A., Bertello, L., Harvey, J.W., Pevtsov, A.A.: 2013, Comparison of ground-based and space-based longitudinal magnetograms. Solar Phys. 282, 91. DOI.
ADS
Article
Google Scholar
The Astropy Collaboration, Price-Whelan, A.M., Sipőcz, B.M., Günther, H.M., Lim, P.L., Crawford, S.M., Conseil, S., Shupe, D.L., Craig, M.W., Dencheva, N., Ginsburg, A., VanderPlas, J.T., Bradley, L.D., Pérez-Suárez, D., de Val-Borro, M., Aldcroft, T.L., Cruz, K.L., Robitaille, T.P., Tollerud, E.J., Ardelean, C., Babej, T., Bach, Y.P., Bachetti, M., Bakanov, A.V., Bamford, S.P., Barentsen, G., Barmby, P., Baumbach, A., Berry, K.L., Biscani, F., Boquien, M., Bostroem, K.A., Bouma, L.G., Brammer, G.B., Bray, E.M., Breytenbach, H., Buddelmeijer, H., Burke, D.J., Calderone, G., Rodríguez, J.L.C., Cara, M., Cardoso, J.V.M., Cheedella, S., Copin, Y., Corrales, L., Crichton, D., D’Avella, D., Deil, C., Depagne, É., Dietrich, J.P., Donath, A., Droettboom, M., Earl, N., Erben, T., Fabbro, S., Ferreira, L.A., Finethy, T., Fox, R.T., Garrison, L.H., Gibbons, S.L.J., Goldstein, D.A., Gommers, R., Greco, J.P., Greenfield, P., Groener, A.M., Grollier, F., Hagen, A., Hirst, P., Homeier, D., Horton, A.J., Hosseinzadeh, G., Hu, L., Hunkeler, J.S., Ivezić, Ž., Jain, A., Jenness, T., Kanarek, G., Kendrew, S., Kern, N.S., Kerzendorf, W.E., Khvalko, A., King, J., Kirkby, D., Kulkarni, A.M., Kumar, A., Lee, A., Lenz, D., Littlefair, S.P., Ma, Z., Macleod, D.M., Mastropietro, M., McCully, C., Montagnac, S., Morris, B.M., Mueller, M., Mumford, S.J., Muna, D., Murphy, N.A., Nelson, S., Nguyen, G.H., Ninan, J.P., Nöthe, M., Ogaz, S., Oh, S., Parejko, J.K., Parley, N., Pascual, S., Patil, R., Patil, A.A., Plunkett, A.L., Prochaska, J.X., Rastogi, T., Janga, V.R., Sabater, J., Sakurikar, P., Seifert, M., Sherbert, L.E., Sherwood-Taylor, H., Shih, A.Y., Sick, J., Silbiger, M.T., Singanamalla, S., Singer, L.P., Sladen, P.H., Sooley, K.A., Sornarajah, S., Streicher, O., Teuben, P., Thomas, S.W., Tremblay, G.R., Turner, J.E.H., Terrón, V., van Kerkwijk, M.H., de la Vega, A., Watkins, L.L., Weaver, B.A., Whitmore, J.B., Woillez, J., Zabalza, V.: 2018, The Astropy project: building an open-science project and status of the v2.0 Core package. Astron. J. 156, 123. DOI.
ADS
Article
Google Scholar
Riley, P., Ben-Nun, M., Linker, J.A., Mikic, Z., Svalgaard, L., Harvey, J., Bertello, L., Hoeksema, T., Liu, Y., Ulrich, R.: 2014, A multi-observatory inter-comparison of line-of-sight synoptic solar magnetograms. Solar Phys. 289, 769. DOI.
ADS
Article
Google Scholar
Schatten, K.H., Wilcox, J.M., Ness, N.F.: 1969, A model of interplanetary and coronal magnetic fields. Solar Phys. 6, 442. DOI.
ADS
Article
Google Scholar
Scherrer, P.H., Bogart, R.S., Bush, R.I., Hoeksema, J.T., Kosovichev, A.G., Schou, J., Rosenberg, W., Springer, L., Tarbell, T.D., Title, A., Wolfson, C.J., Zayer, I., MDI Engineering Team: 1995, The solar oscillations investigation - Michelson Doppler Imager. Solar Phys. 162, 129. DOI.
ADS
Article
Google Scholar
Schrijver, C.J., De Rosa, M.L.: 2003, Photospheric and heliospheric magnetic fields. Solar Phys. 212, 165. DOI.
ADS
Article
Google Scholar
Sheeley, N.R., Wang, Y.-M., Harvey, J.W.: 1989, The effect of newly erupting flux on the polar coronal holes. Solar Phys. 119, 323. DOI.
ADS
Article
Google Scholar
SILSO World Data Center: 2021, The International Sunspot Number, Royal Observatory of Belgium, avenue Circulaire 3, 1180 Brussels, Belgium. http://www.sidc.be/silso/.
Stansby, D., Horbury, T.S., Matteini, L.: 2019, Diagnosing solar wind origins using in situ measurements in the inner heliosphere. Mon. Not. Roy. Astron. Soc. 482, 1706. DOI.
ADS
Article
Google Scholar
Stansby, D., Yeates, A., Badman, S.T.: 2020, Pfsspy: a Python package for potential field source surface modelling. J. Open Sour. Softw. 5, 2732. DOI.
ADS
Article
Google Scholar
Stansby, D., Baker, D., Brooks, D.H., Owen, C.J.: 2020a, Directly comparing coronal and solar wind elemental fractionation. Astron. Astrophys. 640, A28. DOI.
ADS
Article
Google Scholar
Stansby, D., Berčič, L., Matteini, L., Owen, C.J., French, R., Baker, D., Badman, S.T.: 2020b, Sensitivity of solar wind mass flux to coronal temperature. Astron. Astrophys.. DOI.
Article
Google Scholar
Tian, H., Harra, L., Baker, D., Brooks, D.H., Xia, L.: 2021, Upflows in the upper solar atmosphere. Solar Phys. 296, 47. DOI.
ADS
Article
Google Scholar
Tran, T., Bertello, L., Ulrich, R.K., Evans, S.: 2005, Magnetic fields from SOHO MDI converted to the Mount Wilson 150 Foot Solar tower scale. Astrophys. J. Suppl. 156, 295. DOI.
ADS
Article
Google Scholar
van Driel-Gesztelyi, L., Green, L.M.: 2015, Evolution of active regions. Living Rev. Solar Phys. 12, 1. DOI.
ADS
Article
Google Scholar
van Driel-Gesztelyi, L., Culhane, J.L., Baker, D., Démoulin, P., Mandrini, C.H., DeRosa, M.L., Rouillard, A.P., Opitz, A., Stenborg, G., Vourlidas, A., Brooks, D.H.: 2012, Magnetic topology of active regions and coronal holes: implications for coronal outflows and the solar wind. Solar Phys. 281, 237. DOI.
ADS
Article
Google Scholar
van Driel-Gesztelyi, L., Baker, D., Török, T., Pariat, E., Green, L.M., Williams, D.R., Carlyle, J., Valori, G., Démoulin, P., Kliem, B., Long, D.M., Matthews, S.A., Malherbe, J.-M.: 2014, Coronal magnetic reconnection driven by CME expansion—the 2011 June 7 event. Astrophys. J. 788, 85. DOI.
ADS
Article
Google Scholar
Viall, N.M., Borovsky, J.E.: 2020, Nine outstanding questions of solar wind physics. J. Geophys. Res. Space Phys. 125, e2018JA026005. DOI.
ADS
Article
Google Scholar
Virtanen, I.I., Koskela, J.S., Mursula, K.: 2020, Abrupt shrinking of solar corona in the late 1990s. Astrophys. J. 889, L28. DOI.
ADS
Article
Google Scholar
Virtanen, I., Mursula, K.: 2017, Photospheric and coronal magnetic fields in six magnetographs - II. Harmonic scaling of field intensities. Astron. Astrophys. 604, A7. DOI.
ADS
Article
Google Scholar
Virtanen, I.O.I., Virtanen, I.I., Pevtsov, A.A., Yeates, A., Mursula, K.: 2017, Reconstructing solar magnetic fields from historical observations - II. Testing the surface flux transport model. Astron. Astrophys. 604, A8. DOI.
ADS
Article
Google Scholar
Wang, Y.-M.: 2010, On the relative constancy of the solar wind mass flux at 1 Au. Astrophys. J. 715, L121. DOI.
ADS
Article
Google Scholar
Wang, Y.-M.: 2017, Small coronal holes near active regions as sources of slow solar wind. Astrophys. J. 841, 94. DOI.
ADS
Article
Google Scholar
Wang, Y.-M., Sheeley, J.N.R.: 2003a, On the topological evolution of the coronal magnetic field during the solar cycle. Astrophys. J. 599, 1404. DOI.
ADS
Article
Google Scholar
Wang, Y.-M., Sheeley, J.N.R.: 2003b, The solar wind and its magnetic sources at sunspot maximum. Astrophys. J. 587, 818. DOI.
ADS
Article
Google Scholar
Wang, Y.-M., Robbrecht, E., Rouillard, A.P., Sheeley, N.R., Thernisien, A.F.R.: 2010, Formation and evolution of coronal holes following the emergence of active regions. Astrophys. J. 715, 39. DOI.
ADS
Article
Google Scholar
Wenzler, T., Solanki, S.K., Krivova, N.A., Fluri, D.M.: 2004, Comparison between KPVT/SPM and SoHO/MDI magnetograms with an application to solar irradiance reconstructions. Astron. Astrophys. 427, 1031. DOI.
ADS
Article
Google Scholar
Whitbread, T., Yeates, A.R., Muñoz-Jaramillo, A., Petrie, G.J.D.: 2017, Parameter optimization for surface flux transport models. Astron. Astrophys. 607, A76. DOI.
ADS
Article
Google Scholar
Yeates, A.R.: 2014, Coronal magnetic field evolution from 1996 to 2012: continuous non-potential simulations. Solar Phys. 289, 631. DOI.
ADS
Article
Google Scholar
Yeates, A.R., Baker, D., van Driel-Gesztelyi, L.: 2015, Source of a prominent poleward surge during solar cycle 24. Solar Phys. 290, 3189. DOI.
ADS
Article
Google Scholar
Zhao, L., Landi, E., Lepri, S.T., Gilbert, J.A., Zurbuchen, T.H., Fisk, L.A., Raines, J.M.: 2017, On the relation between the in situ properties and the coronal sources of the solar wind. Astrophys. J. 846, 135. DOI.
ADS
Article
Google Scholar