Skip to main content
Log in

Thermal Trigger for Solar Flares I: Fragmentation of the Preflare Current Layer

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We consider the effects of the heat balance on the structural stability of a preflare current layer. The problem of small perturbations is solved in the piecewise homogeneous magnetohydrodynamic (MHD) approximation taking into account viscosity, electrical and thermal conductivity, and radiative cooling. Solution to the problem allows for the formation of an instability of thermal nature. There is no external magnetic field inside the current layer in the equilibrium state, but it can penetrate inside when the current layer is disturbed. The formation of a magnetic field perturbation inside the layer creates a dedicated frequency in a broadband disturbance subject to thermal instability. In the linear phase, the growth time of the instability is proportional to the characteristic time of radiative cooling of the plasma and depends on the logarithmic derivatives of the radiative cooling function with respect to the plasma parameters. The instability results in transverse fragmentation of the current layer with a spatial period of 1–10 Mm along the layer in a wide range of coronal plasma parameters. The role of that instability in the triggering of the primary energy release in solar flares is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Antolin, P.: 2020, Thermal instability and non-equilibrium in solar coronal loops: from coronal rain to long-period intensity pulsations. Plasma Phys. Control. Fusion 62, 014016. DOI. ADS.

    Article  ADS  Google Scholar 

  • Artemyev, A., Zimovets, I.: 2012, Stability of current sheets in the solar corona. Solar Phys. 277, 283. DOI. ADS.

    Article  ADS  Google Scholar 

  • Aulanier, G., DeLuca, E.E., Antiochos, S.K., McMullen, R.A., Golub, L.: 2000, The topology and evolution of the Bastille day flare. Astrophys. J. 540, 1126. DOI. ADS.

    Article  ADS  Google Scholar 

  • Benz, A.O.: 2017, Flare observations. Living Rev. Solar Phys. 14, 2. DOI. ADS.

    Article  ADS  Google Scholar 

  • Carbonell, M., Terradas, J., Oliver, R., Ballester, J.L.: 2006, Spatial damping of linear non-adiabatic magnetoacoustic waves in a prominence medium. Astron. Astrophys. 460, 573. DOI. ADS.

    Article  ADS  Google Scholar 

  • Claes, N., Keppens, R.: 2019, Thermal stability of magnetohydrodynamic modes in homogeneous plasmas. Astron. Astrophys. 624, A96. DOI. ADS.

    Article  ADS  Google Scholar 

  • De Moortel, I., Hood, A.W.: 2004, The damping of slow MHD waves in solar coronal magnetic fields. II. The effect of gravitational stratification and field line divergence. Astron. Astrophys. 415, 705. DOI. ADS.

    Article  ADS  Google Scholar 

  • Dere, K.P., Del Zanna, G., Young, P.R., Landi, E., Sutherland, R.S.: 2019, CHIANTI—an atomic database for emission lines. XV. Version 9, improvements for the X-ray satellite lines. Astron. Astrophys. Suppl. Ser. 241, 22. DOI. ADS.

    Article  ADS  Google Scholar 

  • Field, G.B.: 1965, Thermal instability. Astrophys. J. 142, 531. DOI. ADS.

    Article  ADS  Google Scholar 

  • Furth, H.P., Killeen, J., Rosenbluth, M.N.: 1963, Finite-resistivity instabilities of a sheet pinch. Phys. Fluids 6, 459. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hollweg, J.V.: 1986, Viscosity and the chew-goldberger-low equations in the solar corona. Astrophys. J. 306, 730. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hood, A.W.: 1992, Instabilities in the solar corona. Plasma Phys. Control. Fusion 34, 411. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ibanez, S.M.H., Escalona, T.O.B.: 1993, Propagation of hydrodynamic waves in optically thin plasmas. Astrophys. J. 415, 335. DOI. ADS.

    Article  ADS  Google Scholar 

  • Klimchuk, J.A.: 2019, The distinction between thermal nonequilibrium and thermal instability. Solar Phys. 294, 173. DOI. ADS.

    Article  ADS  Google Scholar 

  • Klimushkin, D.Y., Nakariakov, V.M., Mager, P.N., Cheremnykh, O.K.: 2017, Corrugation instability of a coronal arcade. Solar Phys. 292, 184. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kolotkov, D.Y., Duckenfield, T.J., Nakariakov, V.M.: 2020, Seismological constraints on the solar coronal heating function. Astron. Astrophys. 644, A33. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kolotkov, D.Y., Nakariakov, V.M., Zavershinskii, D.I.: 2019, Damping of slow magnetoacoustic oscillations by the misbalance between heating and cooling processes in the solar corona. Astron. Astrophys. 628, A133. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kolotkov, D.Y., Vasko, I.Y., Nakariakov, V.M.: 2015, Kinetic model of force-free current sheets with non-uniform temperature. Phys. Plasmas 22, 112902. DOI. ADS.

    Article  ADS  Google Scholar 

  • Krucker, S., Hurford, G.J., Lin, R.P.: 2003, Hard X-ray source motions in the 2002 July 23 gamma-ray flare. Astrophys. J. Lett. 595, L103. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ledentsov, L.S., Somov, B.V.: 2015a, Discontinuous plasma flows in magnetohydrodynamics and in the physics of magnetic reconnection. Phys. Usp. 58, 107. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ledentsov, L.S., Somov, B.V.: 2015b, MHD discontinuities in solar flares: continuous transitions and plasma heating. Adv. Space Res. 56, 2779. DOI. ADS.

    Article  ADS  Google Scholar 

  • Nakariakov, V.M., Kolotkov, D.Y.: 2020, Magnetohydrodynamic waves in the solar corona. Annu. Rev. Astron. Astrophys. 58, 441. DOI. ADS.

    Article  ADS  Google Scholar 

  • Nakariakov, V.M., Foullon, C., Verwichte, E., Young, N.P.: 2006, Quasi-periodic modulation of solar and stellar flaring emission by magnetohydrodynamic oscillations in a nearby loop. Astron. Astrophys. 452, 343. DOI. ADS.

    Article  ADS  Google Scholar 

  • Nakariakov, V.M., Afanasyev, A.N., Kumar, S., Moon, Y.-J.: 2017, Effect of local thermal equilibrium misbalance on long-wavelength slow magnetoacoustic waves. Astrophys. J. 849, 62. DOI. ADS.

    Article  ADS  Google Scholar 

  • Oreshina, A.V., Somov, B.V.: 1998, Slow and fast magnetic reconnection. I. Role of radiative cooling. Astron. Astrophys. 331, 1078. ADS.

    ADS  Google Scholar 

  • Pascoe, D.J., Anfinogentov, S., Nisticò, G., Goddard, C.R., Nakariakov, V.M.: 2017, Coronal loop seismology using damping of standing kink oscillations by mode coupling. II. Additional physical effects and Bayesian analysis. Astron. Astrophys. 600, A78. DOI. ADS.

    Article  ADS  Google Scholar 

  • Perelomova, A.: 2020, On description of periodic magnetosonic perturbations in a quasi-isentropic plasma with mechanical and thermal losses and electrical resistivity. Phys. Plasmas 27, 032110. DOI. ADS.

    Article  ADS  Google Scholar 

  • Priest, E.R., Forbes, T.G.: 2002, The magnetic nature of solar flares. Astron. Astrophys. Rev. 10, 313. DOI. ADS.

    Article  ADS  Google Scholar 

  • Reva, A., Shestov, S., Zimovets, I., Bogachev, S., Kuzin, S.: 2015, Wave-like formation of hot loop arcades. Solar Phys. 290, 2909. DOI. ADS.

    Article  ADS  Google Scholar 

  • Rosenbluth, M.N., Kaufman, A.N.: 1958, Plasma diffusion in a magnetic field. Phys. Rev. 109, 1. DOI. ADS.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Rosner, R., Tucker, W.H., Vaiana, G.S.: 1978, Dynamics of the quiescent solar corona. Astrophys. J. 220, 643. DOI. ADS.

    Article  ADS  Google Scholar 

  • Schmelz, J.T., Reames, D.V., von Steiger, R., Basu, S.: 2012, Composition of the solar corona, solar wind, and solar energetic particles. Astrophys. J. 755, 33. DOI. ADS.

    Article  ADS  Google Scholar 

  • Somov, B.V.: 2012, Plasma Astrophysics. Part I: Fundamentals and Practice, second edn., Astrophys. Space Sci. Library, ASSL 391. DOI. ADS.

    Book  MATH  Google Scholar 

  • Somov, B.V.: 2013, Plasma Astrophysics. Part II: Reconnection and Flares, second edn., Astrophys. Space Sci. Library, ASSL. 392. DOI. ADS.

    Book  MATH  Google Scholar 

  • Somov, B.V., Oreshina, A.V.: 2000, Slow and fast magnetic reconnection. II. High-temperature turbulent-current sheet. Astron. Astrophys. 354, 703. ADS.

    ADS  Google Scholar 

  • Somov, B.V., Syrovatskii, S.I.: 1982, Thermal trigger for solar flares and coronal loops formation. Solar Phys. 75, 237. DOI. ADS.

    Article  ADS  Google Scholar 

  • Somov, B.V., Titov, V.S.: 1985a, Magnetic reconnection in a high temperature plasma of solar flares. Solar Phys. 95, 141. DOI. ADS.

    Article  ADS  Google Scholar 

  • Somov, B.V., Titov, V.S.: 1985b, Magnetic reconnection in a high-temperature plasma of solar flares - part two - effects caused by transverse and longitudinal magnetic fields. Solar Phys. 102, 79. DOI. ADS.

    Article  ADS  Google Scholar 

  • Somov, B.V., Verneta, A.I.: 1988, Magnetic reconnection in high-temperature plasma of solar flares - part three. Solar Phys. 117, 89. DOI. ADS.

    Article  ADS  Google Scholar 

  • Somov, B.V., Verneta, A.I.: 1989, Magnetic reconnection in a high-temperature plasma of solar flares - part four. Solar Phys. 120, 93. DOI. ADS.

    Article  ADS  Google Scholar 

  • Somov, B.V., Verneta, A.I.: 1993, Tearing instability of reconnecting current sheets in space plasmas. Space Sci. Rev. 65, 253. DOI. ADS.

    Article  ADS  Google Scholar 

  • Somov, B.V., Dzhalilov, N.S., Staude, J.: 2007, Peculiarities of entropy and magnetosonic waves in optically thin cosmic plasma. Astron. Lett. 33, 309. DOI. ADS.

    Article  ADS  Google Scholar 

  • Somov, B.V., Kosugi, T., Hudson, H.S., Sakao, T., Masuda, S.: 2002, Magnetic reconnection scenario of the Bastille day 2000 flare. Astrophys. J. 579, 863. DOI. ADS.

    Article  ADS  Google Scholar 

  • Spitzer, L., Härm, R.: 1953, Transport phenomena in a completely ionized gas. Phys. Rev. 89, 977. DOI. ADS.

    Article  ADS  MATH  Google Scholar 

  • Syrovatskii, S.I.: 1956, Some properties of discontinuity surfaces in magnetohydrodynamics. Tr. Fiz. Inst. Im. P.N. Lebedeva, Akad. Nauk SSSR 8, 13 [in Russian]

    Google Scholar 

  • Syrovatskii, S.I.: 1958, Magnetohydrodynamik. Fortschr. Phys. 6, 437. DOI. ADS.

    Article  Google Scholar 

  • Syrovatskii, S.I.: 1976, Current-sheet parameters and a thermal trigger for solar flares. Sov. Astron. Lett. 2, 13. ADS.

    ADS  Google Scholar 

  • Toriumi, S., Wang, H.: 2019, Flare-productive active regions. Living Rev. Solar Phys. 16, 3. DOI. ADS.

    Article  ADS  Google Scholar 

  • Uzdensky, D.A.: 2007, The fast collisionless reconnection condition and the self-organization of solar coronal heating. Astrophys. J. 671, 2139. DOI. ADS.

    Article  ADS  Google Scholar 

  • Vorpahl, J.A.: 1976, The triggering and subsequent development of a solar flare. Astrophys. J. 205, 868. DOI. ADS.

    Article  ADS  Google Scholar 

  • Weibel, E.S.: 1959, Spontaneously growing transverse waves in a plasma due to an anisotropic velocity distribution. Phys. Rev. Lett. 2, 83. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zavershinskii, D.I., Kolotkov, D.Y., Nakariakov, V.M., Molevich, N.E., Ryashchikov, D.S.: 2019, Formation of quasi-periodic slow magnetoacoustic wave trains by the heating/cooling misbalance. Phys. Plasmas 26, 082113. DOI. ADS.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author thanks Prof. Boris Somov, Vasilisa Nikiforova, and an anonymous reviewer for discussing the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid Ledentsov.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The author declares that there are no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ledentsov, L. Thermal Trigger for Solar Flares I: Fragmentation of the Preflare Current Layer. Sol Phys 296, 74 (2021). https://doi.org/10.1007/s11207-021-01817-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-021-01817-1

Keywords

Navigation