Skip to main content
Log in

Thermal instability of the reconnecting current layer in solar flares

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

To interpret the present-day satellite observations of the sequential brightening of coronal loops in solar flares, we have solved the problem of the stability of small longitudinal perturbations of a homogeneous reconnecting current layer (CL). Within the magnetohydrodynamic approximation we show that an efficient suppression of plasma heat conduction by amagnetic field perturbation inside the CL serves as an instability condition. The instability in the linear phase grows in the characteristic radiative plasma cooling time. A periodic structure of cold and hot filaments located across the direction of the electric current can be formed as a result of the instability in the CL. The proposed mechanism of the thermal instability of a reconnecting CL can be useful for explaining the sequential brightening (“ignition”) of flare loops in solar flares.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Artemyev and I. Zimovets, Solar Phys. 277, 283 (2012).

    Article  ADS  Google Scholar 

  2. M. Aschwanden, Physics of the Solar Corona: An Introduction with Problems and Solutions (Springer Science, New York, 2006).

    Google Scholar 

  3. H. F. van Beek, L. D. de Feiter, and C. de Jager, COSPAR Space Res. 16 (Berlin, 1976), p. 819.

    Google Scholar 

  4. A. O. Benz, Living Rev. Solar Phys. 5, 1 (2008).

    Article  ADS  Google Scholar 

  5. S. A. Bogachev, B. V. Somov, T. Kosugi, and T. Sakao, Astrophys. J. 630, 561 (2005).

    Article  ADS  Google Scholar 

  6. G. B. Field, Astrophys. J. 142, 531 (1965).

    Article  ADS  Google Scholar 

  7. L. Fletcher, B. R. Dennis, H. S. Hudson, S. Krucker, K. Phillips, A. Veronig, M. Battaglia, L. Bone, et al., Space Sci. Rev. 159, 19 (2011).

    Article  ADS  Google Scholar 

  8. H. P. Furth, J. Killeen, and M. N. Rosenbluth, Phys. Fluids 6, 459 (1963).

    Article  ADS  Google Scholar 

  9. S. Krucker, G. J. Hurford, and R. P. Lin, Astrophys. J. 595, L103 (2003).

    Article  ADS  Google Scholar 

  10. L. S. Ledentsov and B. V. Somov, Phys. Usp. 58, 107 (2015).

    Article  ADS  Google Scholar 

  11. V. M. Nakariakov, C. Foullon, E. Verwichte, and N. P. Young, Astron. Astrophys. 452, 343 (2006).

    Article  ADS  Google Scholar 

  12. A. V. Oreshina and B. V. Somov, Astron. Astrophys. 331, 1078 (1998).

    ADS  Google Scholar 

  13. A. Reva, S. Shestov, I. Zimovets, S. Bogachev, and S. Kuzin, Solar Phys. 290, 2909 (2015).

    Article  ADS  Google Scholar 

  14. M. N. Rosenbluth and A. N. Kaufman, Phys. Rev. 109, 1 (1958).

    Article  ADS  MathSciNet  Google Scholar 

  15. B. Schmieder, T. G. Forbes, J. M. Malherbe, and M. E. Machado, Astrophys. J. 317, 956 (1987).

    Article  ADS  Google Scholar 

  16. B. V. Somov, Physical Processes in Solar Flares (Kluwer Academic, Dordrecht, Boston, 1992).

    Book  Google Scholar 

  17. B. V. Somov, Plasma Astrophysics, Part I. Fundamentals and Practice, 2nd ed. (Springer Science, New York, 2013a).

    MATH  Google Scholar 

  18. B. V. Somov, Plasma Astrophysics, Part II. Reconnection and Flares, 2nd ed. (Springer Science, New York, 2013b).

    Book  MATH  Google Scholar 

  19. B. V. Somov and A. V. Oreshina, Astron. Astrophys. 354, 703 (2000).

    ADS  Google Scholar 

  20. B. V. Somov and S. I. Syrovatskii, Sov. Phys. Usp. 19, 813 (1976).

    Article  ADS  Google Scholar 

  21. B.V. Somov and S. I. Syrovatskii, Solar Phys. 75, 237 (1982).

    Article  ADS  Google Scholar 

  22. B. V. Somov and A. I. Verneta, Space Sci. Rev. 65, 253 (1994).

    Article  ADS  Google Scholar 

  23. L. Spitzer and R. Härm, Phys. Rev. 89, 977 (1953).

    Article  ADS  Google Scholar 

  24. S. I. Syrovatskii, Tr. Fiz. Inst. Lebedeva AN SSSR 8, 13 (1956).

    Google Scholar 

  25. S. I. Syrovatskii, Usp. Fiz. Nauk 62, 247 (1957).

    Article  Google Scholar 

  26. S. I. Syrovatskii, Sov. Phys. JETP 23, 754 (1966).

    ADS  Google Scholar 

  27. S. I. Syrovatskii, Sov. Phys. JETP 33, 933 (1971).

    ADS  Google Scholar 

  28. S. I. Syrovatskii, Sov. Astron. Lett. 2, 13 (1976).

    ADS  Google Scholar 

  29. J. A. Vorpahl, Astrophys. J. 205, 868 (1976).

    Article  ADS  Google Scholar 

  30. G. del Zanna, K. P. Dere, P. R. Young, E. Landi, and H. E. Mason, Astron. Astrophys. 582, A56 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. S. Ledentsov.

Additional information

Original Russian Text © L.S. Ledentsov, B.V. Somov, 2016, published in Pis’ma v Astronomicheskii Zhurnal, 2016, Vol. 42, No. 12, pp. 925–934.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ledentsov, L.S., Somov, B.V. Thermal instability of the reconnecting current layer in solar flares. Astron. Lett. 42, 841–849 (2016). https://doi.org/10.1134/S1063773716120045

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773716120045

Keywords

Navigation