Skip to main content
Log in

Solar Soft X-ray Irradiance Variability, I: Segmentation of Hinode/XRT Full-Disk Images and Comparison with GOES (1 – 8 Å) X-Ray Flux

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

It is of great interest and importance to study the variabilities of solar EUV, UV and X-ray irradiance in heliophysics, in Earth’s climate, and space weather applications. A careful study is required to identify, track, monitor and segment the different coronal features such as active regions (ARs), coronal holes (CHs), the background regions (BGs) and the X-ray bright points (XBPs) from spatially resolved full-disk images of the Sun. Variability of solar soft X-ray irradiance is studied for a period of 13 years (February 2007–March 2020, covers Solar Cycle 24), using the X-Ray Telescope on board the Hinode (Hinode/XRT) and GOES (1 – 8 Å). The full-disk X-ray images observed in Al_mesh filter from XRT are used, for the first time, to understand the solar X-ray irradiance variability measured, Sun as a star, by GOES instrument. An algorithm in Python has been developed and applied to identify and segment coronal X-ray features (ARs, CHs, BGs, and XBPs) from the full-disk soft X-ray observations of Hinode/XRT. The segmentation process has been carried out automatically based on the intensity level, morphology and sizes of the X-ray features. The total intensity, area, and contribution of ARs/CHs/BGs/XBPs features were estimated and compared with the full-disk integrated intensity (FDI) and GOES (1 – 8 Å) X-ray irradiance measurements. The XBPs have been identified and counted automatically over the full disk to investigate their relation to solar magnetic cycle. The total intensity of ARs/CHs/BGs/XBPs/FD regions are compared with the GOES (1 – 8 Å) X-ray irradiance variations. We present the results obtained from Hinode/XRT full-disk images (in Al_mesh filter) and compare the resulting integrated full-disk intensity (FDI) with GOES X-ray irradiance. The X-ray intensity measured over ARs/CHs/BGs/XBPs/FD is well correlated with GOES X-ray flux. The contributions of the segmented X-ray features to FDI and X-ray irradiance variations are determined. It is found that the background and active regions have a greater impact on the X-ray irradiance fluctuations. The mean contribution estimated for the whole observed period of the background regions (BGs) will be around \(65\pm10.97\%\), whereas the ARs, XBPs and CHs are \(30\pm11.82\%\), \(4\pm1.18\%\) and \(1\pm0.52\%\), respectively, to total solar X-ray flux. We observed that the area and contribution of ARs and CHs varies with the phase of the solar cycle, whereas the BGs and XBPs show an anti-correlation. We find that the area of the coronal features is highly variable suggesting that their area has to be taken into account in irradiance models, in addition to their intensity variations. The time series results of XBPs suggest for an existence of anti-correlation between the number of XBPs and the sunspot numbers. It is also important to consider both the number variation and the contribution of XBPs in the reconstruction of total solar X-ray irradiance variability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Acton, L.W., Weston, D.C., Bruner, M.E.: 1999, Deriving solar X ray irradiance from Yohkoh observations. J. Geophys. Res. 104, 14827. DOI. ADS.

    Article  ADS  Google Scholar 

  • Acton, L.W., Culhane, J.L., Gabriel, A.H., Bentley, R.D., Bowles, J.A., Firth, J.G., Finch, M.L., Gilbreth, C.W., Guttridge, P., Hayes, R.W., Joki, E.G., Jones, B.B., Kent, B.J., Leibacher, J.W., Nobles, R.A., Patrick, T.J., Phillips, K.J.H., Rapley, C.G., Sheather, P.H., Sherman, J.C., Stark, J.P., Springer, L.A., Turner, R.F., Wolfson, C.J.: 1980, The soft X-ray polychromator for the Solar Maximum Mission. Solar Phys. 65, 53. DOI. ADS.

    Article  ADS  Google Scholar 

  • Alipour, N., Safari, H.: 2015, Statistical properties of solar coronal bright points. Astrophys. J. 807, 175. DOI. ADS.

    Article  ADS  Google Scholar 

  • Arish, S., Javaherian, M., Safari, H., Amiri, A.: 2016, Extraction of active regions and coronal holes from EUV images using the unsupervised segmentation method in the Bayesian framework. Solar Phys. 291, 1209. DOI. ADS.

    Article  ADS  Google Scholar 

  • Aschwanden, M.J.: 1994, Irradiance observations of the 1 – 8 Å solar soft X-ray flux from goes. Solar Phys. 152, 53. DOI. ADS.

    Article  ADS  Google Scholar 

  • Bailey, S.M., Woods, T.N., Barth, C.A., Solomon, S.C., Canfield, L.R., Korde, R.: 2000, Measurements of the solar soft X-ray irradiance by the Student Nitric Oxide Explorer: first analysis and underflight calibrations. J. Geophys. Res. 105, 27179. DOI. ADS.

    Article  ADS  Google Scholar 

  • Bailey, S.M., Woods, T.N., Eparvier, F.G., Solomon, S.C.: 2006, Observations of the solar soft X-ray irradiance by the Student Nitric Oxide Explorer. Adv. Space Res. 37, 209. DOI. ADS.

    Article  ADS  Google Scholar 

  • de Wit, T.D.: 2006, Fast segmentation of solar extreme ultraviolet images. Solar Phys. 239, 519. DOI. ADS.

    Article  ADS  Google Scholar 

  • Dere, K.P., Horan, D.M., Kreplin, R.W.: 1974, The spectral dependence of solar soft X-ray flux values obtained by SOLRAD 9. J. Atmos. Terr. Phys. 36, 989. DOI. ADS.

    Article  ADS  Google Scholar 

  • Dorotovic, I., Coelho, A., Rybak, J., Mora, A., Ribeiro, R., Kusa, W., Pires, R.: 2018, Automatic detection and tracking of coronal bright points in SDO/AIA images. Sun Geosph. 13, 129. DOI. ADS.

    Article  ADS  Google Scholar 

  • Foukal, P., Lean, J.: 1988, Magnetic modulation of solar luminosity by photospheric activity. Astrophys. J. 328, 347. DOI. ADS.

    Article  ADS  Google Scholar 

  • Giono, G., Zender, J.J., Kariyappa, R., Damé, L.: 2021, Origin of the solar rotation harmonics seen in the EUV and UV irradiance. Solar Phys. submitted.

  • Golub, L., Deluca, E., Austin, G., Bookbinder, J., Caldwell, D., Cheimets, P., Cirtain, J., Cosmo, M., Reid, P., Sette, A., Weber, M., Sakao, T., Kano, R., Shibasaki, K., Hara, H., Tsuneta, S., Kumagai, K., Tamura, T., Shimojo, M., McCracken, J., Carpenter, J., Haight, H., Siler, R., Wright, E., Tucker, J., Rutledge, H., Barbera, M., Peres, G., Varisco, S.: 2007, The X-Ray Telescope (XRT) for the Hinode mission. Solar Phys. 243, 63. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hall, L.A., Hinteregger, H.E.: 1970, Solar radiation in the extreme ultraviolet and its variation with solar rotation. J. Geophys. Res. 75, 6959. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hara, H., Nakakubo-Morimoto, K.: 2003, Variation of the X-ray bright point number over the solar activity cycle. Astrophys. J. 589, 1062. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hara, H., Nakakubo-Morimoto, K.: 2004, In: Sakurai, T., Sekii, T. (eds.) Variation of the X-Ray Bright Point Number over the Solar Activity Cycle, Astronomical Society of the Pacific Conference Series 325, 307. ADS.

    Google Scholar 

  • Kariyappa, R.: 1999, Quiet-Sun variability with the solar cycle. In: Rimmele, T.R., Balasubramaniam, K.S., Radick, R.R. (eds.) High Resolution Solar Physics: Theory, Observations, and Techniques, Astronomical Society of the Pacific Conference Series 183, 501. ADS.

    Google Scholar 

  • Kariyappa, R.: 2000, CaII K imaging to understand UV irradiance variability. J. Astrophys. Astron. 21, 293. ADS.

    Article  ADS  Google Scholar 

  • Kariyappa, R.: 2008a, Solar coronal rotation determined by X-ray bright points in Hinode/XRT and Yohkoh/SXT full-disc images. Astron. Astrophys. 488, 297. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kariyappa, R.: 2008b, Spatially resolved images and solar irradiance variability. J. Astrophys. Astron. 29, 159. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kariyappa, R., DeLuca, E.: 2012, Coronal rotation from XBPs observed with Hinode/XRT. In: Golub, L., De Moortel, I., Shimizu, T. (eds.) Fifth Hinode Science Meeting, Astronomical Society of the Pacific Conference Series 456, 207. ADS.

    Google Scholar 

  • Kariyappa, R., Pap, J.M.: 1996, Contribution of chromospheric features to UV irradiance variability from spatially-resolved CA II K spectroheliograms. Solar Phys. 167, 115. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kariyappa, R., Sivaraman, K.R.: 1994, Variability of the solar chromospheric network over the solar cycle. Solar Phys. 152, 139. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kariyappa, R., Sivaraman, K.R., Anadaram, M.N.: 1994, Heating of the quiet solar chromosphere – part one. Solar Phys. 151, 243. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kariyappa, R., Varghese, B.A.: 2008, Intensity oscillations and heating of the coronal X-ray bright points from Hinode/XRT. Astron. Astrophys. 485, 289. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kariyappa, R., Deluca, E.E., Saar, S.H., Golub, L., Damé, L., Pevtsov, A.A., Varghese, B.A.: 2011, Temperature variability in X-ray bright points observed with Hinode/XRT. Astron. Astrophys. 526, A78. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kosugi, T., Matsuzaki, K., Sakao, T., Shimizu, T., Sone, Y., Tachikawa, S., Hashimoto, T., Minesugi, K., Ohnishi, A., Yamada, T., Tsuneta, S., Hara, H., Ichimoto, K., Suematsu, Y., Shimojo, M., Watanabe, T., Shimada, S., Davis, J.M., Hill, L.D., Owens, J.K., Title, A.M., Culhane, J.L., Harra, L.K., Doschek, G.A., Golub, L.: 2007, The Hinode (Solar-B) Mission: an overview. Solar Phys. 243, 3. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kumara, S.T., Kariyappa, R., Dominique, M., Berghmans, D., Damé, L., Hochedez, J.F., Doddamani, V.H., Chitta, L.P.: 2012, Preliminary results on irradiance measurements from Lyra and Swap. Adv. Astron. 2012, 623709. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kumara, S.T., Kariyappa, R., Zender, J.J., Giono, G., Delouille, V., Chitta, L.P., Damé, L., Hochedez, J.-F., Verbeeck, C., Mampaey, B., Doddamani, V.H.: 2014, Segmentation of coronal features to understand the solar EUV and UV irradiance variability. Astron. Astrophys. 561, A9. DOI. ADS.

    Article  Google Scholar 

  • Lean, J.: 1987, Solar ultraviolet irradiance variations – a review. J. Geophys. Res. 92, 839. DOI. ADS.

    Article  ADS  Google Scholar 

  • McIntosh, S.W.: 2007, On the mass and energy loading of extreme-UV bright points. Astrophys. J. 670, 1401. DOI. ADS.

    Article  ADS  Google Scholar 

  • McIntosh, S.W., Gurman, J.B.: 2005, Nine years of EUV bright points. Solar Phys. 228, 285. DOI. ADS.

    Article  ADS  Google Scholar 

  • Nakakubo, K., Hara, H.: 2000, Variation of X-ray bright point number over the solar activity cycle. Adv. Space Res. 25, 1905. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ogawara, Y., Acton, L.W., Bentley, R.D., Bruner, M.E., Culhane, J.L., Hiei, E., Hirayama, T., Hudson, H.S., Kosugi, T., Lemen, J.R., Strong, K.T., Tsuneta, S., Uchida, Y., Watanabe, T., Yoshimori, M.: 1992, The status of Yohkoh in orbit: an introduction to the initial scientific results. Publ. Astron. Soc. Japan 44, L41. ADS.

    ADS  Google Scholar 

  • Sattarov, I., Pevtsov, A.A., Hojaev, A.S., Sherdonov, C.T.: 2002, X-ray bright points and photospheric bipoles during cycles 22 and 23. Astrophys. J. 564, 1042. DOI. ADS.

    Article  ADS  Google Scholar 

  • Shahamatnia, E., Dorotovič, I., Fonseca, J.M., Ribeiro, R.A.: 2016, An evolutionary computation based algorithm for calculating solar differential rotation by automatic tracking of coronal bright points. J. Space Weather Space Clim. 6, A16. DOI. ADS.

    Article  ADS  Google Scholar 

  • Sivaraman, K.R.: 1984, Ca II K bright points and the solar cycle. Solar Phys. 94, 235. DOI. ADS.

    Article  ADS  Google Scholar 

  • Takeda, A., Yoshimura, K., Saar, S.H.: 2016, The Hinode/XRT full-Sun image corrections and the improved synoptic composite image archive. Solar Phys. 291, 317. DOI. ADS.

    Article  ADS  Google Scholar 

  • Vaiana, G.S., Krieger, A.S., Timothy, A.F., Zombeck, M.: 1976, ATM observations, X-ray results. Astrophys. Space Sci. 39, 75. DOI. ADS.

    Article  ADS  Google Scholar 

  • van der Zwaard, R., Berghmann, M., Zender, J., Kariappa, R., Giono, G., Damé, L.: 2021, Segmentation of coronal features to understand the solar EUV and UV irradiance variability III. Inclusion and Analysis of Bright points. Solar Phys. submitted.

  • Veselovsky, I.S., Zhukov, A.N., Dmitriev, A.V., Tarsina, M.V., Clette, F., Cugnon, P., Hochedez, J.F.: 2001, Global asymmetry of the Sun observed in the Extreme Ultraviolet Radiation. Solar Phys. 201, 27. ADS.

    Article  ADS  Google Scholar 

  • Viereck, R.A., Machol, J.L.: 2017, AGU Fall Meeting Abstracts #SH42A-06. ADS.

    Google Scholar 

  • Worden, J.R., White, O.R., Woods, T.N.: 1998, Evolution of chromospheric structures derived from Ca II K spectroheliograms: implications for solar ultraviolet irradiance variability. Astrophys. J. 496, 998. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zender, J.J., Kariyappa, R., Giono, G., Bergmann, M., Delouille, V., Damé, L., Hochedez, J.-F., Kumara, S.T.: 2017, Segmentation of photospheric magnetic elements corresponding to coronal features to understand the EUV and UV irradiance variability. Astron. Astrophys. 605, A41. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zhang, Y.X., Fang, C., Ding, M.D., Livingston, W.C.: 2001, Quiet-Sun variability in a temperature minimum region. Astrophys. J. Lett. 547, L179. DOI. ADS.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Hinode is a Japanese mission developed and launched by ISAS/JAXA, in collaboration with NAOJ as a domestic partner, NASA and STFC (UK) as international partners. The Hinode science team at ISAS /JAXA has conducted the Scientific operation of the Hinode mission. This team mainly consists of scientists from different institutes in the partner countries. JAXA and NAOJ (Japan), STFC (UK), NASA (USA), ESA, and NSC (Norway) have provided the support for the post-launch operation. The Hinode team had contributed all their efforts in the design, build, and operation of the mission. RK wishes to express his sincere thanks to all members of ISEE for the support provided under Joint International Research Program. A part of these results were presented by RK at the PSTEP-4 International Symposium held at ISEE/Nagoya University from January 28 – 30, 2020 and his visit to this symposium has been supported by MEXT/JSPS KAKENHI Grant Number JP15H05816. The authors are thankful to the referee for the valuable comments and suggestions that improved the manuscript considerably.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rangaiah Kariyappa.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adithya, H.N., Kariyappa, R., Shinsuke, I. et al. Solar Soft X-ray Irradiance Variability, I: Segmentation of Hinode/XRT Full-Disk Images and Comparison with GOES (1 – 8 Å) X-Ray Flux. Sol Phys 296, 71 (2021). https://doi.org/10.1007/s11207-021-01785-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-021-01785-6

Keywords

Navigation