Skip to main content
Log in

The Distribution Function of the Average Iron Charge State at 1 AU: From a Bimodal Wind to ICME Identification

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We aim to investigate the distribution function of the iron charge state, at 1 AU to check if it corresponds to a bimodal wind. We use data from the Solar Wind Ion Composition Spectrometer (SWICS) instrument on board the Advanced Composition Explorer (ACE) along 20 years. We propose the bi-Gaussian function as the probability distribution function that fits the average iron charge state, \(\langle Q_{\text{Fe}}\rangle \), distribution. We study the evolution of the parameters of the bimodal distribution with the solar cycle. We compare the outliers of the sample with the existing catalogs of interplanetary coronal mass ejections (ICMEs) and identify new ICMEs. The \(\langle Q_{\text{Fe}}\rangle \) at 1 AU shows a bimodal distribution related to the solar cycle. Our results confirm that \(\langle Q_{\text{Fe}}\rangle > 12 \) is a trustworthy proxy for ICME identification and a reliable signature in the ICME boundary definition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  • Bale, S.D., Badman, S.T., Bonnell, J.W., Bowen, T.A., Burgess, D., Case, A.W., Cattell, C.A., Chandran, B.D.G., Chaston, C.C., Chen, C.H.K., et al.: 2019, Highly structured slow solar wind emerging from an equatorial coronal hole. Nature 576, 237. DOI

    Article  ADS  Google Scholar 

  • Banaszkiewicz, M., Czechowski, A., Axford, W.I., McKenzie, J.F., Sukhorukova, G.V.: 1997, The fast solar wind and its source region. In: Wilson, A. (ed.) Correlated Phenomena at the Sun, in the Heliosphere and in Geospace, ESA-SP 415, 17. ADS.

    Google Scholar 

  • Burlaga, L.F., King, J.H.: 1979, Intense interplanetary magnetic fields observed by geocentric spacecraft during 1963 – 1975. J. Geophys. Res. 84(A11), 6633. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cid, C., Palacios, J., Saiz, E., Guerrero, A.: 2016, Redefining the boundaries of interplanetary coronal mass ejections from observations at the ecliptic plane. Astrophys. J. 828(1), 11. DOI.

    Article  ADS  Google Scholar 

  • Cranmer, S.R., Gibson, S.E., Riley, P.: 2017, Origins of the ambient solar wind: implications for space weather. Space Sci. Rev. 212(3 – 4), 1345. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gloeckler, G., Cain, J., Ipavich, F.M., Tums, E.O., Bedini, P., Fisk, L.A., Zurbuchen, T.H., Bochsler, P., Fischer, J., Wimmer-Schweingruber, R.F., Geiss, J., Kallenbach, R.: 1998, Investigation of the composition of solar and interstellar matter using solar wind and pickup ion measurements with SWICS and SWIMS on the ACE spacecraft. Space Sci. Rev. 86(1), 497. DOI.

    Article  ADS  Google Scholar 

  • Gringauz, K.I.: 1961, Some results of experiments in interplanetary space by means of charged particle traps on Soviet space probes. Space Research II, 539. ADS.

    Google Scholar 

  • Gringauz, K.I., Bezrukikh, V.V., Musatov, L.S.: 1967, Solar-wind observations with the Venus 3 probe. Cosm. Res. 5, 216. ADS.

    ADS  Google Scholar 

  • Gringauz, K.I., Bezrokikh, V.V., Ozerov, V.D., Rybchinskii, R.E.: 1960, A study of the interplanetary ionized gas, high-energy electrons and corpuscular radiation from the Sun by means of the three-electrode trap for charged particles on the second Soviet cosmic rocket. Sov. Phys. Dokl. 5, 361. ADS.

    ADS  Google Scholar 

  • Heidrich-Meisner, V., Peleikis, T., Kruse, M., Berger, L., Wimmer-Schweingruber, R.: 2016, Observations of high and low Fe charge states in individual solar wind streams with coronal-hole origin. Astron. Astrophys. 593, A70. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hundhausen, A.J.: 1972, Coronal Expansion and Solar Wind. Physics and Chemistry in Space 5. DOI. ADS.

    Book  Google Scholar 

  • Jian, L.K., Russell, C.T., Luhmann, J.G.: 2011, Comparing solar minimum 23/24 with historical solar wind records at 1 AU. Solar Phys. 274(1 – 2), 321. DOI. ADS.

    Article  ADS  Google Scholar 

  • Jian, L., Russell, C.T., Luhmann, J.G., Skoug, R.M.: 2006, Properties of interplanetary coronal mass ejections at one AU during 1995 – 2004. Solar Phys. 239(1 – 2), 393. DOI. ADS.

    Article  ADS  Google Scholar 

  • Larrodera, C., Cid, C.: 2020, Bimodal distribution of the solar wind at 1 AU. Astron. Astrophys. 635, A44.

    Article  ADS  Google Scholar 

  • Lepri, S.T.: 2004, Iron charge state distributions as an indicator of hot ICMEs: possible sources and temporal and spatial variations during solar maximum. J. Geophys. Res. 109(A1), A01112. DOI.

    Article  ADS  Google Scholar 

  • Lepri, S.T., Zurbuchen, T.H., Fisk, L.A., Richardson, I.G., Cane, H.V., Gloeckler, G.: 2001, Iron charge distribution as an identifier of interplanetary coronal mass ejections. J. Geophys. Res. 106(A12), 29231. DOI. ADS.

    Article  ADS  Google Scholar 

  • Li, K.J., Zhanng, J., Feng, W.: 2016, A statistical analysis of 50 years of daily solar wind velocity data. Astrophys. J. 151, 128. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lionello, R., Riley, P., Linker, J.A., Mikić, Z.: 2005, The effects of differential rotation on the magnetic structure of the solar corona: magnetohydrodynamic simulations. Astrophys. J. 625(1), 463. DOI. ADS.

    Article  ADS  Google Scholar 

  • Neugebauer, M., Snyder, C.W.: 1966, Mariner 2 observations of the solar wind, 1, average properties. J. Geophys. Res. 71, 4469. DOI. ADS.

    Article  ADS  Google Scholar 

  • Neugebauer, M., Liewer, P.C., Smith, E.J., Skoug, R.M., Zurbuchen, T.H.: 2002, Sources of the solar wind at solar activity maximum. J. Geophys. Res. 107(A12), 1488. DOI. ADS.

    Article  Google Scholar 

  • Richardson, I.G., Cane, H.V.: 1995, Regions of abnormally low proton temperature in the solar wind (1965 – 1991) and their association with ejecta. J. Geophys. Res. 100(A12), 23397. DOI. ADS.

    Article  ADS  Google Scholar 

  • Richardson, I.G., Cane, H.V.: 2004, Identification of interplanetary coronal mass ejections at 1 AU using multiple solar wind plasma composition anomalies. J. Geophys. Res. 109(A9), A09104. DOI.

    Article  ADS  Google Scholar 

  • Richardson, I., Cane, H.: 2005, Survey of interplanetary coronal mass ejections in the near-Earth solar wind during 1996 – 2005. AGU Spring Meeting Abs. 2005, SH43A. ADS.

    Google Scholar 

  • Rossi, B.: 1991, The interplanetary plasma. Annu. Rev. Astron. Astrophys. 29, 1. DOI. ADS.

    Article  ADS  Google Scholar 

  • Schwenn, R.: 2006a, Solar wind sources and their variations over the solar cycle. Space Sci. Rev. 124, 51. DOI. ADS.

    Article  ADS  Google Scholar 

  • Schwenn, R.: 2006b, Space weather: the solar perspective. Living Rev. Solar Phys. 3(1), 2. DOI. ADS.

    Article  ADS  Google Scholar 

  • Viall, N.M., Borovsky, J.E.: 2020, Nine outstanding questions of solar wind physics. J. Geophys. Res.. DOI.

    Article  Google Scholar 

  • Vörös, Z., Leitner, M., Narita, Y., Consolini, G., Kovács, P., Tóth, A., Lichtenberger, J.: 2015, Probability density functions for the variable solar wind near the solar cycle minimum. J. Geophys. Res. 120(8), 6152. DOI. ADS.

    Article  Google Scholar 

  • Zhao, L., Zurbuchen, T.H., Fisk, L.A.: 2009, Global distribution of the solar wind during solar cycle 23: ACE observations. Geophys. Res. Lett. 36(14), L14104. DOI. ADS.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the MINECO project AYA2016-80881-P (including FEDER funds). We thank the SWICS, SWEPAM and MAG instruments teams and the ACE Science Center for providing the ACE data. We acknowledge WDC-SILSO, Royal Observatory of Belgium, Brussels, for providing the sunspot number. We also acknowledge the information from the CME catalog generated and maintained at the CDAW Data Center by NASA and The Catholic University of America in cooperation with the Naval Research Laboratory. SOHO is a project of international cooperation between ESA and NASA. The authors want to thank an anonymous reviewer for the useful comments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. Larrodera or C. Cid.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larrodera, C., Cid, C. The Distribution Function of the Average Iron Charge State at 1 AU: From a Bimodal Wind to ICME Identification. Sol Phys 295, 156 (2020). https://doi.org/10.1007/s11207-020-01727-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-020-01727-8

Keywords

Navigation