Skip to main content
Log in

Modeling Differential Faraday Rotation in the Solar Corona

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

For decades, radio remote-sensing techniques have been used to probe the plasma structure of the solar corona at distances of 2 – \(20~\mathrm{R}_{\odot }\). Measurement of Faraday rotation, the change in the polarization position angle of linearly polarized radiation as it propagates through a magnetized plasma, has proven to be one of the best methods for determining the coronal magnetic-field strength and structure. Faraday-rotation observations of spatially extended radio sources provide the unique opportunity to measure differential Faraday rotation [\(\Delta \)RM] the difference in the Faraday-rotation measure between two closely spaced lines of sight (LOS) through the corona. \(\Delta \)RM is proportional to the electric current within an Ampèrian loop formed, in part, by the two closely spaced LOS. We report the expected \(\Delta \)RM for two sets of models for the corona: one set of models for the corona employs a spherically symmetric plasma density, while the other breaks this symmetry by assuming that the heliospheric current sheet (HCS) is a finite-width streamer-belt region containing a high-density plasma. For each plasma-density model, we evaluate the \(\Delta \mathrm{RM}\) for three model coronal magnetic fields: a radial dipole and interplanetary magnetic field (DIMF), a dipole + current sheet (DCS), and a dipole + quadrupole + current sheet (DQCS). These models predict values of \(0.01\lesssim \Delta \mathrm{RM}\lesssim 120~\mbox{rad}\,\mbox{m}^{-2}\) over the range of parameter space accessible by modern instruments such as the Karl G. Jansky Very Large Array. We conclude that the HCS contribution to \(\Delta \)RM is not negligible at moderate heliocentric distances (\(<8~\mathrm{R}_{\odot }\)) and may account for \(\lesssim 20\,\%\) of previous observations of \(\Delta \)RM (e.g. made by Spangler, Astrophys. J. 670, 841, 2007).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  • Adamson, E., Büchner, J., Otto, A.: 2013, On the role of current dissipation in the energization of coronal bright points. Astron. Astrophys. 557, A118. DOI. ADS.

    Article  ADS  Google Scholar 

  • Bale, S.D., Badman, S.T., Bonnell, J.W., Bowen, T.A., Burgess, D., Case, A.W., Cattell, C.A., Chandran, B.D.G., Chaston, C.C., Chen, C.H.K., Drake, J.F., de Wit, T.D., Eastwood, J.P., Ergun, R.E., Farrell, W.M., Fong, C., Goetz, K., Goldstein, M., Goodrich, K.A., Harvey, P.R., Horbury, T.S., Howes, G.G., Kasper, J.C., Kellogg, P.J., Klimchuk, J.A., Korreck, K.E., Krasnoselskikh, V.V., Krucker, S., Laker, R., Larson, D.E., MacDowall, R.J., Maksimovic, M., Malaspina, D.M., Martinez-Oliveros, J., McComas, D.J., Meyer-Vernet, N., Moncuquet, M., Mozer, F.S., Phan, T.D., Pulupa, M., Raouafi, N.E., Salem, C., Stansby, D., Stevens, M., Szabo, A., Velli, M., Woolley, T., Wygant, J.R.: 2019, Highly structured slow solar wind emerging from an equatorial coronal hole. Nature 576, 237. DOI. ADS.

    Article  ADS  Google Scholar 

  • Banaszkiewicz, M., Axford, W.I., McKenzie, J.F.: 1998, An analytic solar magnetic field model. Astron. Astrophys. 337, 940. ADS.

    ADS  Google Scholar 

  • Bird, M.K., Pätzold, M., Edenhofer, P., Asmar, S.W., McElrath, T.P.: 1996, Coronal radio sounding with Ulysses: Solar wind electron density near 0.1AU during the 1995 conjunction. Astron. Astrophys. 316, 441. ADS.

    ADS  Google Scholar 

  • Bougeret, J.-L., Kaiser, M.L., Kellogg, P.J., Manning, R., Goetz, K., Monson, S.J., Monge, N., Friel, L., Meetre, C.A., Perche, C., Sitruk, L., Hoang, S.: 1995, Waves: The radio and plasma wave investigation on the wind spacecraft. Space Sci. Rev. 71, 231. DOI. ADS.

    Article  ADS  Google Scholar 

  • Brower, D.L., Ding, W.X., Terry, S.D., Anderson, J.K., Biewer, T.M., Chapman, B.E., Craig, D., Forest, C.B., Prager, S.C., Sarff, J.S.: 2002, Measurement of the current-density profile and plasma dynamics in the reversed-field pinch. Phys. Rev. Lett. 88, 185005. DOI. ADS.

    Article  ADS  Google Scholar 

  • Büchner, J.: 2006, Locating current sheets in the solar corona. Space Sci. Rev. 122, 149. DOI. ADS.

    Article  ADS  Google Scholar 

  • Costa, A.H., Spangler, S.R.: 2018, A Faraday rotation study of the stellar bubble and H II region associated with the W4 complex. Astrophys. J. 865, 65. DOI. ADS.

    Article  ADS  Google Scholar 

  • Costa, A.H., Spangler, S.R., Sink, J.R., Brown, S., Mao, S.A.: 2016, Denser sampling of the Rosette nebula with Faraday rotation measurements: Improved estimates of magnetic fields in H II regions. Astrophys. J. 821, 92. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ding, W.X., Brower, D.L., Terry, S.D., Craig, D., Prager, S.C., Sarff, J.S., Wright, J.C.: 2003, Measurement of internal magnetic field fluctuations in a reversed-field pinch by Faraday rotation. Phys. Rev. Lett. 90, 035002. DOI. ADS.

    Article  ADS  Google Scholar 

  • Forsyth, R.J., Balogh, A., Horbury, T.S., Erdoes, G., Smith, E.J., Burton, M.E.: 1996, The heliospheric magnetic field at solar minimum: ULYSSES observations from pole to pole. Astron. Astrophys. 316, 287. ADS.

    ADS  Google Scholar 

  • Gibson, S.E., Fludra, A., Bagenal, F., Biesecker, D., del Zanna, G., Bromage, B.: 1999, Solar minimum streamer densities and temperatures using Whole Sun Month coordinated data sets. J. Geophys. Res. 104, 9691. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gleeson, L.J., Axford, W.I.: 1976, An analytic model illustrating the effects of rotation on a magnetosphere containing low-energy plasma. J. Geophys. Res. 81, 3403. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gudiksen, B.V., Nordlund, Å.: 2005, An ab initio approach to the solar coronal heating problem. Astrophys. J. 618, 1020. DOI. ADS.

    Article  ADS  Google Scholar 

  • Guhathakurta, M., Fludra, A., Gibson, S.E., Biesecker, D., Fisher, R.: 1999, Physical properties of a coronal hole from a coronal diagnostic spectrometer, Mauna Loa coronagraph, and LASCO observations during the Whole Sun Month. J. Geophys. Res. 104, 9801. DOI. ADS.

    Article  ADS  Google Scholar 

  • Habbal, S.R., Withbroe, G.L.: 1981, Spatial and temporal variations of EUV coronal bright points. Solar Phys. 69, 77. DOI. ADS.

    Article  ADS  Google Scholar 

  • Helmboldt, J.F., Kooi, J.E., Ray, P.S., Clarke, T.E., Intema, H.T., Kassim, N.E., Mroczkowski, T.: 2019, The VLA Low-band Ionosphere and Transient Experiment (VLITE): Ionospheric signal processing and analysis. Radio Sci. 54, 1002. DOI. ADS.

    Article  ADS  Google Scholar 

  • Heyvaerts, J., Priest, E.R.: 1984, Coronal heating by reconnection in DC current systems - A theory based on Taylor’s hypothesis. Astron. Astrophys. 137, 63. ADS.

    ADS  Google Scholar 

  • Howard, R.A., Vourlidas, A., Bothmer, V., Colaninno, R.C., DeForest, C.E., Gallagher, B., Hall, J.R., Hess, P., Higginson, A.K., Korendyke, C.M., Kouloumvakos, A., Lamy, P.L., Liewer, P.C., Linker, J., Linton, M., Penteado, P., Plunkett, S.P., Poirier, N., Raouafi, N.E., Rich, N., Rochus, P., Rouillard, A.P., Socker, D.G., Stenborg, G., Thernisien, A.F., Viall, N.M.: 2019, Near-Sun observations of an F-corona decrease and K-corona fine structure. Nature 576, 232. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ingleby, L.D., Spangler, S.R., Whiting, C.A.: 2007, Probing the large-scale plasma structure of the solar corona with Faraday rotation measurements. Astrophys. J. 668, 520. DOI. ADS.

    Article  ADS  Google Scholar 

  • Jagannathan, P., Bhatnagar, S., Rau, U., Taylor, A.R.: 2017, Direction-dependent corrections in polarimetric radio imaging. I. Characterizing the effects of the primary beam on full-Stokes imaging. Astrophys. J. 154, 56. DOI. ADS.

    Article  ADS  Google Scholar 

  • Jagannathan, P., Bhatnagar, S., Brisken, W., Taylor, A.R.: 2018, Direction-dependent corrections in polarimetric radio imaging. II. A-solver methodology: A low-order solver for the A-term of the A-projection algorithm. Astrophys. J. 155, 3. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kasper, J.C., Bale, S.D., Belcher, J.W., Berthomier, M., Case, A.W., Chandran, B.D.G., Curtis, D.W., Gallagher, D., Gary, S.P., Golub, L., Halekas, J.S., Ho, G.C., Horbury, T.S., Hu, Q., Huang, J., Klein, K.G., Korreck, K.E., Larson, D.E., Livi, R., Maruca, B., Lavraud, B., Louarn, P., Maksimovic, M., Martinovic, M., McGinnis, D., Pogorelov, N.V., Richardson, J.D., Skoug, R.M., Steinberg, J.T., Stevens, M.L., Szabo, A., Velli, M., Whittlesey, P.L., Wright, K.H., Zank, G.P., MacDowall, R.J., McComas, D.J., McNutt, R.L., Pulupa, M., Raouafi, N.E., Schwadron, N.A.: 2019, Alfvénic velocity spikes and rotational flows in the near-Sun solar wind. Nature 576, 228. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kooi, J.E., Fischer, P.D., Buffo, J.J., Spangler, S.R.: 2014, Measurements of coronal Faraday rotation at 4.6 \(\mbox{R} _{\odot }\). Astrophys. J. 784, 68. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kooi, J.E., Fischer, P.D., Buffo, J.J., Spangler, S.R.: 2017, VLA measurements of Faraday rotation through coronal mass ejections. Solar Phys. 292, 56. DOI. ADS.

    Article  ADS  Google Scholar 

  • Koskela, J.S., Virtanen, I.I., Mursula, K.: 2018, Southward shift of the coronal neutral line and the heliospheric current sheet: Evidence for radial evolution of hemispheric asymmetry. Astron. Astrophys. 618, A105. DOI. ADS.

    Article  ADS  Google Scholar 

  • Leblanc, Y., Dulk, G.A., Bougeret, J.-L.: 1998, Tracing the electron density from the corona to 1au. Solar Phys. 183, 165. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mancuso, S., Spangler, S.R.: 2000, Faraday rotation and models for the plasma structure of the solar corona. Astrophys. J. 539, 480. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mancuso, S., Frassati, F., Bemporad, A., Barghini, D.: 2019, Three-dimensional reconstruction of CME-driven shock-streamer interaction from radio and EUV observations: A different take on the diagnostics of coronal magnetic fields. Astron. Astrophys. 624, L2. DOI. ADS.

    Article  ADS  Google Scholar 

  • McComas, D.J., Christian, E.R., Cohen, C.M.S., Cummings, A.C., Davis, A.J., Desai, M.I., Giacalone, J., Hill, M.E., Joyce, C.J., Krimigis, S.M., Labrador, A.W., Leske, R.A., Maland raki, O., Matthaeus, W.H., McNutt, R.L., Mewaldt, R.A., Mitchell, D.G., Posner, A., Rankin, J.S., Roelof, E.C., Schwadron, N.A., Stone, E.C., Szalay, J.R., Wiedenbeck, M.E., Bale, S.D., Kasper, J.C., Case, A.W., Korreck, K.E., MacDowall, R.J., Pulupa, M., Stevens, M.L., Rouillard, A.P.: 2019, Probing the energetic particle environment near the Sun. Nature 576, 223. DOI. ADS.

    Article  ADS  Google Scholar 

  • Parker, E.N.: 1972, Topological dissipation and the small-scale fields in turbulent gases. Astrophys. J. 174, 499. DOI. ADS.

    Article  ADS  Google Scholar 

  • Pätzold, M., Bird, M.K., Volland, H., Levy, G.S., Seidel, B.L., Stelzried, C.T.: 1987, The mean coronal magnetic field determined from HELIOS Faraday rotation measurements. Solar Phys. 109, 91. DOI. ADS.

    Article  ADS  Google Scholar 

  • Peter, H., Gudiksen, B.V., Nordlund, Å.: 2006, Forward modeling of the corona of the Sun and solar-like stars: From a three-dimensional magnetohydrodynamic model to synthetic extreme-ultraviolet spectra. Astrophys. J. 638, 1086. DOI. ADS.

    Article  ADS  Google Scholar 

  • Podgorny, A.I.: 1989, On the possibility of the solar flare energy accumulation in the vicinity of a singular line. Solar Phys. 123, 285. DOI.

    Article  ADS  Google Scholar 

  • Podgorny, A.I., Podgorny, I.M., Meshalkina, N.S.: 2018, Current sheets in corona and X-ray sources for flares above the active region 10365. J. Atmos. Solar-Terr. Phys. 180, 16. DOI. ADS.

    Article  ADS  Google Scholar 

  • Prager, S.C.: 1999, Dynamo and anomalous transport in the reversed field pinch. Plasma Phys. Control. Fusion 41, A129. DOI. ADS.

    Article  ADS  Google Scholar 

  • Priest, E.R.: 1982, Solar Magneto-Hydrodynamics 21, 1st edn. Reidel, Dordrecht. DOI. ADS.

    Book  Google Scholar 

  • Spangler, S.R.: 2005, The strength and structure of the coronal magnetic field. Space Sci. Rev. 121, 189. DOI. ADS.

    Article  ADS  Google Scholar 

  • Spangler, S.R.: 2007, A technique for measuring electrical currents in the solar corona. Astrophys. J. 670, 841. DOI. ADS.

    Article  ADS  Google Scholar 

  • Spangler, S.R.: 2009, Joule heating and anomalous resistivity in the solar corona. Nonlinear Process. Geophys. 16, 443. ADS.

    Article  ADS  Google Scholar 

  • Spitzer, L.: 1962, Physics of Fully Ionized Gases, 2nd edn. Interscience, New York.

    MATH  Google Scholar 

  • Vaiana, G.S., Krieger, A.S., Timothy, A.F.: 1973, Identification and analysis of structures in the corona from X-ray photography. Solar Phys. 32, 81. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wilcox, J.M., Ness, N.F.: 1965, Quasi-stationary corotating structure in the interplanetary medium. J. Geophys. Res. 70, 5793. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wolfram Research, Inc.: 2020, Mathematica, Version 12.1. Champaign, IL.

Download references

Acknowledgments

This work was supported at the US Naval Research Laboratory by the Jerome and Isabella Karle Distinguished Scholar Fellowship program and by 6.1 base funding. The authors would like to thank Avni Singh, Prateek Bardhan, and Ian Sutcliffe for their contributions to this research while participating in the Science and Engineering Apprenticeship Program (SEAP) for high school students. The Karl G. Jansky Very Large Array is an instrument of the National Radio Astronomy Observatory. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. The authors also thank the reviewer whose comments and insights improved the final article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason E. Kooi.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

To better understand the \(\Delta \mathrm{RM}\) as a function of \(\beta _{c}\) for the DCS and DQCS models in Figures 6 and 9, it is constructive to examine the contributions to \(\Delta \mathrm{RM}\) from the separate magnetic-field components \(B_{\rho }\) and \(B_{z}\). Figure 12 shows the \(B_{\rho }\)- and \(B_{z}\)-contributions to the DCS and DQCS model \(\Delta \mathrm{RM}\) for the LDB and Streamer/Hole plasma densities (top and bottom panels, respectively). In this figure, we have selected the same impact-parameter offset as before (\(\varepsilon =0.05\)). We only demonstrate the behavior for a single impact parameter \(R_{\mathrm{A}}=3~\mathrm{R}_{\odot }\), because the overall behavior of the \(\Delta \mathrm{RM}\) for the LDB and Streamer/Hole models at larger impact parameters is similar (Section 3.1).

Figure 12
figure 12

The contribution to differential Faraday rotation \([\Delta \mathrm{RM}]\) from the \(\rho \)- and \(z\)-components of the magnetic field as a function of the angle at which the LOS intersect the neutral line \([\beta _{c}]\). The impact-parameter offset between the two LOS is \(\varepsilon =0.05\), approximately the offset between the two LOS discussed by Spangler (2007) and Kooi et al. (2014). The impact parameter of the LOS closest to the Sun is \(R_{\mathrm{A}}=3~\mathrm{R}_{\odot }\). The plasma densities used to compute \(\Delta \mathrm{RM}\) are the spherically symmetric LDB model (top panel, Leblanc, Dulk, and Bougeret, 1998) and the Streamer/Hole plasma-density model (bottom panel, Mancuso and Spangler, 2000).

Aside from the reduction in magnitude, the \(B_{\rho }\)-contribution to \(\Delta \mathrm{RM}\) does not vary significantly in form between the two plasma-density models. It is clear that the difference between the \(\Delta \mathrm{RM}\) resulting from the LDB and Streamer/Hole plasma-density models for \(\beta _{c}\lesssim \pi /4\) results from the \(B_{z}\)-contribution (DCS\(z\) and DQCS\(z\) in Figure 12). In the case of the DCS model, when the impact parameter is small and \(\beta _{c}\approx 0\), the LOS for small \(\beta \) is largely parallel to the dipolar magnetic field (for a demonstration of this dipolar structure, see Figure 2, top panel in Banaszkiewicz, Axford, and McKenzie, 1998). This region of near-parallel magnetic-field lines is then enhanced by the Streamer density in the bottom panel. In the case of the DQCS model, the magnetic field has a quadrupolar structure (e.g. Figure 4); therefore, there is no such concentrated region of near-parallel field lines.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kooi, J.E., Kaplan, M.E. Modeling Differential Faraday Rotation in the Solar Corona. Sol Phys 295, 114 (2020). https://doi.org/10.1007/s11207-020-01684-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-020-01684-2

Keywords

Navigation