Skip to main content
Log in

The Solar Wind Speed Expansion Factor [\({v}\)\(f _{\text{s}}\)] Relationship at the Inner Boundary (18 \(\text{R}_{\odot }\)) of the Heliosphere

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

The accuracy of data-driven magnetohydrodynamics (MHD) models depends on accurate boundary conditions specified at the inner heliosphere. However, not all of the MHD parameters [\(\boldsymbol{B}, \boldsymbol{v}, \rho , T\)] are measurable close to the Sun at the present time, except the vector magnetic field [\(\boldsymbol{B} \)] at the photosphere. The solar wind speed [\(\boldsymbol{v}\)], which is probably most relevant to space-weather forecasting, is often modeled by the standard Wang–Sheeley (WS) formula, which is based on an inverse relationship between the solar wind speed [\(\boldsymbol{v}\)] at 1 AU and the expansion factor [\(f_{\text{s}}\)] estimated at 2.5 solar radii [\(\text{R}_{ \odot }\)], with the following generic form: \({v} = {v}_{1} + {v}_{2} f_{\text{s}}^{- \alpha }\) (where \(\boldsymbol{v}\) is the solar wind speed at 18 \(\text{R}_{\odot }\), \(f_{\text{s}}\) is the magnetic-field expansion factor, and \({v}_{1}\), \({v}_{2}\), and \(\alpha \) are three free parameters to be determined). While the WS formula uses “source projection” to determine the solar wind source, it does not treat the solar wind as plasma because it uses the solar wind speed observed at 1 AU to derive the empirical relationship. Thus, the resulting formula ignores the transport and acceleration of the solar wind as it propagates out into the heliosphere. The purpose of this study is to rectify this omission by using a numerical MHD simulation to find the optimal set of free parameters that relate the magnetic properties at the source surface to the plasma parameters at 1 AU. In addition to the expansion factor, conservation of mass [\(\rho \boldsymbol{v}\)], magnetic flux [\(r ^{2} B\)], and total pressure along the stream line are assumed to obtain the solar wind mass density, magnetic field, and temperature at 18 \(\text{R}_{\odot }\). These parameters are used as the inner boundary conditions of our global three-dimensional MHD (G3DMHD) code to simulate solar wind plasma and field parameters out to \({\approx}\, 1~\mbox{AU}\). The simulation results are compared with the in-situ data from Wind to assess the accuracy. Such a procedure is repeated (880 times) to cover the three parameter regimes (\(100 < {v}_{1} < 350~\mbox{km}\,\mbox{s}^{-1}\); \(250 < {v}_{2} < 700~\mbox{km}\,\mbox{s}^{-1}\); and \(0.2 < \alpha < 0.9\)) to find the optimal set. The simulation is performed for the period of CR2082 [30 March 2019 to 27 April 2009]. It is found that \(\boldsymbol{v} = 189 + 679 f_{\text{s}}^{-0.7}\) is the best formula to relate the solar wind speed at 18 \(\text{R}_{\odot }\) to the expansion factor. Strictly speaking, this formula is most applicable for solar equatorial regions and near the times of solar minimum when there are few coronal mass ejection events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Arge, C.N., Pizzo, V.J.: 1999, Historical verification of the Wang–Sheeley model: further improvements in basic technique. In: Habbal, S.R., Halas, C.D., (eds.) Proc. Ninth Internat. Solar Wind Conf.CP-471, Am. Inst. Phys., Melville, 569. DOI .

    Chapter  Google Scholar 

  • Arge, C.N., Pizzo, V.J.: 2000, Improvement in the prediction of solar wind conditions using near-real time solar magnetic field updates. J. Geophys. Res.105, 10465. DOI .

    Article  ADS  Google Scholar 

  • Arge, C.N., Odstrcil, D., Pizzo, V.J., Mayer, L.R.: 2003, Improved method for specifying solar wind speed near the Sun. In: Velli, M., Bruno, R., Malara, F. (eds.) Proc. Tenth Internat. Solar Wind Conf.CP-679, Am. Inst. Phys., Melville, 190. DOI .

    Chapter  Google Scholar 

  • Arge, C.N., Luhmann, J.G., Schrijver, C.J., Li, Y.: 2004, Stream structure and coronal sources of the solar wind during the May 12th, 1997 CME. J. Atmos. Solar-Terr. Phys.66, 1295. DOI .

    Article  ADS  Google Scholar 

  • Detman, T.R., Dryer, M., Yeh, T., Han, S.M., Wu, S.T.: 1991, A time-dependent, three-dimensional MHD numerical study of interplanetary magnetic draping around plasmoids in the solar wind. J. Geophys. Res.96, 9531. DOI .

    Article  ADS  Google Scholar 

  • Dryer, M., Wu, C.-C., Smith, Z.K.: 1997, Three-dimensional MHD simulation of the April 14, 1994, interplanetary coronal mass ejection and its propagation to Earth and Ulysses. J. Geophys. Res.102, 14065. DOI .

    Article  ADS  Google Scholar 

  • Feng, X., Ma, X., Xiang, C.: 2015, Data-driven modeling of the solar wind from 1 Rs to 1 AU. J. Geophys. Res.120, 10, 159. DOI .

    Article  Google Scholar 

  • Fry, C.D., Sun, W., Deehr, C.S., Dryer, M., Smith, Z., Akasofu, S.-I., Tokumaru, M., Kojima, M.: 2001, Improvements to the HAF solar wind model for space weather predictions. J. Geophys. Res.106(A10), 20985. DOI .

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Yashiro, S., Mäkelä, P., Xie, H., Akiyama, S., Monstein, C.: 2018, Extreme kinematics of the 2017 September 10 solar eruption and the spectral characteristics of the associated energetic particles. Astrophys. J. Lett.863, L39. DOI .

    Article  ADS  Google Scholar 

  • Groth, C.P., De Zeeuw, D.L., Gombosi, T.I., Powell, K.G.: 2000, Global three-dimensional MHD simulation of a space weather event: CME formation, interplanetary propagation, and interaction with the magnetosphere. J. Geophys. Res.105, 25053. DOI .

    Article  ADS  Google Scholar 

  • Han, S.M.: 1977, A numerical study of two dimensional time dependent magnetohydrodynamic flows. Ph.D. Thesis, University of Alabama in Huntsville.

  • Han, S.M., Wu, S.T., Dryer, M.: 1988, A three-dimensional, time-dependent numerical modeling of super-sonic, super-Alfvénic MHD flow. Comput. Fluids16, 81.

    Article  ADS  Google Scholar 

  • Hayashi, K., Tokumaru, M., Fujiki, K., Kojima, M.: 2011, Three-dimensional solar wind structures obtained with MHD simulation model using observation-based time-varying inner boundary map. In: Pogorelov, N.V. (ed.) 5th Internat. Conf. Numerical Modeling of Space Plasma Flows (ASTRONUM 2010), Astron. Soc. Pacific, San Francisco, 211. ADS .

    Google Scholar 

  • Hess, P., Colaninno, R.C.: 2017, Comparing automatic CME detections in multiple LASCO and SECCHI catalogs. Astrophys. J.836, 134. DOI .

    Article  ADS  Google Scholar 

  • Lax, P.D., Wendroff, B.: 1960, Systems of conservation laws. Commun. Pure Appl. Math.13, 217.

    Article  Google Scholar 

  • Lepping, R.P., Wu, C.-C., Berdichevsky, D.B., Szabo, A.: 2015, Wind magnetic clouds for 2010 –  2012: model parameter fittings, associated shock waves, and comparisons to earlier periods. Solar Phys.290, 2265. DOI .

    Article  ADS  Google Scholar 

  • Linker, J.A., Mikić, Z., Riley, P., Lionello, R., Odstrcil, D.: 2003, Models of coronal mass ejections: a review with a look to the future. In: Velli, M., Bruno, R., Malara, F. (eds.) Proc. Tenth Internat. Solar WindCP-679, Am. Inst. Phys., Melville, 703. DOI .

    Chapter  Google Scholar 

  • Liou, K., Wu, C.-C.: 2016, A possible cause of the diminished solar wind during the solar Cycle 23 – 24 minimum. Solar Phys.291, 3777. DOI .

    Article  ADS  Google Scholar 

  • Liou, K., Wu, C.-C., Dryer, M., Wu, S.T., Nathan, R., Plunkett, S., Simpson, L., Fry, C.D., Schenk, K.: 2014, Global simulation of extremely fast coronal mass ejection on 23 July 2012. J. Atmos. Solar-Terr. Phys.121, 32. DOI

    Article  ADS  Google Scholar 

  • Lugaz, N., Roussev, I.: 2011, Numerical modeling of interplanetary coronal mass ejections and comparison with heliospheric images. J. Atmos. Solar-Terr. Phys.73, 1187. DOI .

    Article  ADS  Google Scholar 

  • Manchester, W.B., Gombosi, T.I., Roussev, I., Ridley, A., Zeeuw, D.D., Sokolov, I.V., Powell, K.G., Tóth, G.: 2004, Modeling a space weather event from the Sun to the Earth: CME generation and interplanetary propagation. J. Geophys. Res.109, A02107. DOI .

    Article  ADS  Google Scholar 

  • McComas, D.J., Ebert, R.W., Elliott, H.A., Goldstein, B.E., Gosling, J.T., Schwardron, N.A., Skoug, R.M.: 2008, Weaker solar wind from the polar coronal holes and the whole Sun. Geophys. Res. Lett.35, L18103. DOI .

    Article  ADS  Google Scholar 

  • McGregor, S.L., Hughes, W.J., Arge, C.N., Owens, M.J., Odstrcil, D.: 2011, The distribution of solar wind speeds during solar minimum calibration for numerical solar wind modeling constrains on the source of the slow solar wind. J. Geophys. Res.116, A03101. DOI .

    Article  ADS  Google Scholar 

  • Merkin, V.G., Lyon, J.G., Lario, D., Arge, C.N., Henney, C.J.: 2016, Time-dependent magnetohydrodynamic simulations of the inner heliosphere. J. Geophys. Res.121, 2866. DOI .

    Article  Google Scholar 

  • Mikić, Z., Linker, J.A.: 1994, Disruption of coronal magnetic field arcades. Astrophys. J.430, 898. DOI .

    Article  ADS  Google Scholar 

  • Odstrčil, D.: 2003, Modeling 3-D solar wind structure. Adv. Space Res.32, 497. DOI .

    Article  ADS  Google Scholar 

  • Odstrčil, D., Pizza, V.J.: 1999a, Three-dimensional propagation of CMEs in a structured solar wind flow: 1. CME launched within the streamer belt. J. Geophys. Res.104, 483. DOI .

    Article  ADS  Google Scholar 

  • Odstrčil, D., Pizza, V.J.: 1999b, Three-dimensional propagation of coronal mass ejections in a structured solar wind flow 2. CME launched adjacent to the streamer belt. J. Geophys. Res.104, 28225. DOI .

    Article  ADS  Google Scholar 

  • Owens, M., Cargill, P.: 2004, Predictions of the arrival time of coronal mass ejections at 1 AU: an analysis of the causes of errors. Ann. Geophys.22, 661. DOI .

    Article  ADS  Google Scholar 

  • Owens, M.J., Arge, C.N., Spence, H.E., Pembroke, A.: 2005, An event-based approach to validating solar wind speed predictions: High speed enhancements in the Wang–Sheeley–Arge model. J. Geophys. Res.110, A12105. DOI .

    Article  ADS  Google Scholar 

  • Pogorelov, N.V., Borovikov, S.N., Kryukov, I.A., Wu, S.T., Yalim, M.S., Colella, P.C., Van Straalen, B.: 2017, Modeling coronal mass ejections with the multi-scale fluid-kinetic simulation suite. In: Pogorelov, N.V., Audit, E., Zank, G.P. (eds.) Proc. 11th Internat. Conf. Numerical Modelling of Space Plasma Flows (ASTRONUM 2016)CS-837, J. Phys., IOP, Bristol, 012014. DOI .

    Chapter  Google Scholar 

  • Riley, P., Linker, L.A., Arge, C.N.: 2015, On the role played by magnetic expansion factor in the prediction of solar wind speed. Space Weather13, 154. DOI .

    Article  ADS  Google Scholar 

  • Shen, F., Feng, X.S., Wu, S.T., Xiang, C.Q., Song, W.B.: 2011, Three-dimensional MHD simulation of the evolution of the April 2000 CME event and its induced shocks using a magnetized plasma blob model. J. Geophys. Res.116, A04102. DOI .

    Article  ADS  Google Scholar 

  • Shiota, D., Kataoka, R., Miyoshi, Y., Hara, T., Tao, C., Masunaga, K., Futaana, Y., Terada, N.: 2014, Inner heliosphere MHD modeling system applicable to space weather forecasting for the other planets. Space Weather12, 187. DOI .

    Article  ADS  Google Scholar 

  • Smith, E.J., Balogh, A.: 2008, Decrease in heliospheric magnetic flux in this solar minimum: recent Ulysses magnetic field observations. Geophys. Res. Lett.35, L22105. DOI .

    Article  ADS  Google Scholar 

  • Tóth, G., Sokolov, J.V., Gombosi, T.I., Chesney, D.R., Clauer, C.R., de Zeeuw, D.L., Hansen, K.C., Kane, K.J., Manchester, W.B., Oehmke, R.C., Powell, K.G., Ridley, A.J., Roussev, I., Stout, Q.F., Volberg, O., Wolf, R.A., Sazykin, S., Chan, A., Yu, B., Kóta, J.: 2005, Space weather modeling framework: a new tool for the space science community. J. Geophys. Res.110, A12226. DOI .

    Article  ADS  Google Scholar 

  • Vandas, M., Odstrčil, D., Watari, S.: 2002, Three-dimensional MHD simulation of a loop-like magnetic cloud in the solar wind. J. Geophys. Res.107, 1236. DOI .

    Article  Google Scholar 

  • Vourlidas, A., Balmaceda, L.A., Guillermo, S., Dal Lago, A.: 2017, Multi-viewpoint control mass ejection catalog based on STEREO COR2 observations. Astrophys. J.838, 141. DOI .

    Article  ADS  Google Scholar 

  • Wang, Y.-M., Colaninno, R.: 2014, Is solar cycle 24 producing more coronal mass ejections than Cycle 23? Astrophys. J. Lett.784, L27. DOI .

    Article  ADS  Google Scholar 

  • Wang, Y.-M., Robbrecht, E., Sheeley, N.R. Jr.: 2009, On the weakening of the polar magnetic fields during solar cycle 23. Astrophys. J.707, 1372. DOI .

    Article  ADS  Google Scholar 

  • Wang, Y.-M., Sheeley, N.R. Jr, Nash, A.G.: 1990, Latitudinal distribution of solar wind speed from magnetic observations of the Sun. Nature347, 439. DOI .

    Article  ADS  Google Scholar 

  • Wang, Y.-M., Sheeley, N.R. Jr.: 1990, Solar wind speed and coronal flux-tube expansion. Astrophys. J.355, 726. DOI .

    Article  ADS  Google Scholar 

  • Wang, Y.-M., Sheeley, N.R. Jr.: 1992, On potential field models of the solar corona. Astrophys. J.392, 310. DOI .

    Article  ADS  Google Scholar 

  • Wu, C.-C., Dryer, M.: 1997, Three-dimensional MHD simulation of interplanetary magnetic field changes at 1 AU caused by a simulated solar disturbance and a tilted heliospheric current/plasma sheet. Solar Phys.173, 391. DOI .

    Article  ADS  Google Scholar 

  • Wu, C.-C., Dryer, M., Wu, S.T.: 1996, Three-dimensional MHD simulation of interplanetary magnetic field changes at 1 AU as a consequence of simulated solar flares. Ann. Geophys.14(4), 383. DOI .

    Article  ADS  Google Scholar 

  • Wu, C.-C., Lepping, R.P.: 2015, Comparisons of characteristics of magnetic clouds and cloud-like structures during 1995 – 2012. Solar Phys.290, 1243. DOI .

    Article  ADS  Google Scholar 

  • Wu, C.-C., Lepping, R.P., Gopalswamy, N.: 2006, Relationships among magnetic clouds, CMES, and geomagnetic storms. Solar Phys.239, 449. DOI .

    Article  ADS  Google Scholar 

  • Wu, C.-C., Fry, C.D., Dryer, M., Smith, Z., Detman, T.: 2005, Predicting the arrival time of shock passages at Earth. Solar Phys.227, 371. DOI .

    Article  ADS  Google Scholar 

  • Wu, C.-C., Fry, C.D., Wu, S.T., Dryer, M., Liou, K.: 2007a, Three-dimensional global simulation of ICME propagation from the Sun to the heliosphere: 12 May 1997. J. Geophys. Res.112, A09104. DOI .

    Article  ADS  Google Scholar 

  • Wu, C.-C., Fry, C.D., Wu, S.T., Dryer, M., Thompson, B., Liou, K., Feng, X.S.: 2007b, Three-dimensional global simulation of multiple ICMEs’ interaction and propagation from the Sun to the heliosphere following the 25 – 28 October 2003 solar events, coronal mass ejections. Adv. Space Rev.40, 1827. DOI .

    Article  ADS  Google Scholar 

  • Wu, C.-C., Dryer, M., Wu, S.T., Wood, B., Fry, C.D., Liou, K., Plunkett, S.: 2011, Global three-dimensional simulation of the interplanetary evolution of the observed geoeffective CME during the epoch August 1 – 4, 2010. J. Geophys. Res.116, A12103. DOI .

    Article  ADS  Google Scholar 

  • Wu, C.-C., Liou, K., Wu, S.T., Dryer, M., Fry, C.D., Plunkett, S.: 2012, Heliospheric three-dimensional global simulation of multiple interacting coronal mass ejections during the Halloween 2003 epoch. In: Heerikhuisen, J., Li, G., Pogorelov, N., Zank, G. (eds.) Physics of the Heliosphere: A 10 Year Retrospective: Proc. 10th Annu. Internat. Astrophys. Conf.CP-1436, Am. Inst. Phys., Melville, 285. DOI .

    Chapter  Google Scholar 

  • Wu, C.-C., Liou, K., Lepping, R.P., Hutting, L., Plunkett, S., Howard, R.A., Socker, D.: 2016a, The first super geomagnetic storm of Solar Cycle 24: “The St. Patrick’s day event (17 March 2015)”. Earth Planets Space68, 151. DOI .

    Article  ADS  Google Scholar 

  • Wu, C.-C., Liou, K., Vourlidas, A., Plunkett, S., Dryer, M., Wu, S.T., Mewaldt, R.A.: 2016b, Global magnetohydrodynamic simulation of the March 15, 2013 coronal mass ejection event – interpretation of the 30 – 80 MeV proton flux. J. Geophys. Res.121, 56. DOI .

    Article  Google Scholar 

  • Wu, C.-C., Liou, K., Lepping, R.P., Hutting, L.: 2019, The 04-10 September 2017 Sun–Earth connection events: solar flares, coronal mass ejections/magnetic clouds, and geomagnetic storms. Solar Phys.294, 110. DOI .

    Article  ADS  Google Scholar 

  • Wu, S.T., Wu, C.-C., Liou, K., Plunkett, S., Dryer, M., Fry, C.D.: 2014, Analyses of the evolution and interaction of multiple coronal mass ejections and their shocks in July 2012. In: Hu, Q., Zank, G.P. (eds.) Outstanding Problems in Heliophysics: from Coronal Heating to the Edge of the HeliosphereCS-484, Astron. Soc. Pacific, San Francisco, 241.

    Google Scholar 

  • Yalim, M.S., Pogorelov, N., Liu, Y.: 2017, A data-driven MHD model of the global solar corona within multi-scale fluid-kinetic simulation suite (MS-FLUKSS). In: Pogorelov, N.V., Audit, E., Zank, G.P. (eds.) Proc. 11th Internat. Conf. Numerical Modelling of Space Plasma Flows (ASTRONUM 2016)CS-837, J. Phys., IOP, Bristol, 012015. DOI .

    Chapter  Google Scholar 

  • Yu, H.S., Jackson, B.V., Hick, P.P., Buffington, A., Odstrcil, D., Wu, C.-C., Davies, J.A., Bisi, M.M., Tokumaru, M.: 2015, 3D reconstruction of interplanetary scintillation (IPS) remote-sensing data: global solar wind boundaries for driving 3D-MHD models. Solar Phys.290, 2519. DOI .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

All data used in this study are obtained from the public domain. We thank the Wind PI teams and the National Space Science Data Center at NASA/Goddard Space Flight Center for providing the solar wind plasma and magnetic-field data. The work of C.C. Wu was supported partially by the Chief of Naval Research and the NASA 80HQTR18T0023, HSWO2R17-0005, and 80HRTR19T0062 grants. The work of K. Liou was supported by the NSF grant 1743118 to the Johns Hopkins University Applied Physics Laboratory. The authors thank Christopher Kung from Engility/DoD High Performance Computing Modernization Office PETTT program for his technical assistance in parallelizing the G3DMHD code.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chin-Chun Wu.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, CC., Liou, K. & Warren, H. The Solar Wind Speed Expansion Factor [\({v}\)\(f _{\text{s}}\)] Relationship at the Inner Boundary (18 \(\text{R}_{\odot }\)) of the Heliosphere. Sol Phys 295, 25 (2020). https://doi.org/10.1007/s11207-019-1576-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-019-1576-6

Keywords

Navigation