Skip to main content

Advertisement

Log in

A Possible Cause of the Diminished Solar Wind During the Solar Cycle 23 – 24 Minimum

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Interplanetary magnetic field and solar wind plasma density observed at 1 AU during Solar Cycle 23 – 24 (SC-23/24) minimum were significantly smaller than those during its previous solar cycle (SC-22/23) minimum. Because the Earth’s orbit is embedded in the slow wind during solar minimum, changes in the geometry and/or content of the slow wind region (SWR) can have a direct influence on the solar wind parameters near the Earth. In this study, we analyze solar wind plasma and magnetic field data of hourly values acquired by Ulysses. It is found that the solar wind, when averaging over the first (1995.6 – 1995.8) and third (2006.9 – 2008.2) Ulysses’ perihelion (\({\sim}\,1.4~\mbox{AU}\)) crossings, was about the same speed, but significantly less dense (\({\sim}\,34~\%\)) and cooler (\({\sim}\,20~\%\)), and the total magnetic field was \({\sim}\,30~\%\) weaker during the third compared to the first crossing. It is also found that the SWR was \({\sim}\,50~\%\) wider in the third (\({\sim}\,68.5^{\circ}\) in heliographic latitude) than in the first (\({\sim}\,44.8^{\circ}\)) solar orbit. The observed latitudinal increase in the SWR is sufficient to explain the excessive decline in the near-Earth solar wind density during the recent solar minimum without speculating that the total solar output may have been decreasing. The observed SWR inflation is also consistent with a cooler solar wind in the SC-23/24 than in the SC-22/23 minimum. Furthermore, the ratio of the high-to-low latitude photospheric magnetic field (or equatorward magnetic pressure force), as observed by the Mountain Wilson Observatory, is smaller during the third than the first Ulysses’ perihelion orbit. These findings suggest that the smaller equatorward magnetic pressure at the Sun may have led to the latitudinally-wider SRW observed by Ulysses in SC-23/24 minimum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Abramenko, V., Yurchyshyn, V., Linker, J., Mikić, Z., Luhmann, J., Lee, C.O.: 2010, Low-latitude coronal holes at the minimum of the 23rd solar cycle. Astrophys. J. 712, 813. DOI .

    Article  ADS  Google Scholar 

  • Balogh, A., Beek, T.J., Forsyth, R.J., Hedgecock, P.C., Marquedant, R.J., Smith, E.J., Southwood, D.J., Tsurutani, B.T.: 1992, The magnetic field investigation on the Ulysses mission: Instrumentation and preliminary scientific results. Astron. Astrophys. Suppl. 92, 221.

    ADS  Google Scholar 

  • Bame, S.J., McComas, D.J., Barraclough, B.L., Phillips, J.L., Sofaly, K.J., Chavez, J.C., Goldstein, B.E., Sakurai, R.K.: 1992, The Ulysses solar wind plasma experiment. Astron. Astrophys. Suppl. 92, 237.

    ADS  Google Scholar 

  • Battams, K., Dennison, H.A., Howard, R.A., Lean, J.L.: 2016, A new solar irradiance index from global observations of the white-light corona. Astrophys. J., submitted.

  • Bavassano, B., Woo, R., Bruno, R.: 1997, Heliospheric plasma sheet and coronal streamers. Geophys. Res. Lett. 24, 1655. DOI .

    Article  ADS  Google Scholar 

  • Belcher, J.W., Lazarus, A.J., McNutt, R.L. Jr., Gordon, G.S. Jr.: 1993, Solar wind conditions in the outer heliosphere and the distance to the termination shock. J. Geophys. Res. 98, 15177. DOI .

    Article  ADS  Google Scholar 

  • Bird, M.K., Volland, H., Paetzold, M., Edenhofer, P., Asmar, S.W., Brenkle, J.P.: 1994, The coronal electron density distribution determined from dual-frequency ranging measurements during the 1991 solar conjunction of the ULYSSES spacecraft. Astrophys. J. 426, 373. DOI .

    Article  ADS  Google Scholar 

  • Borrini, G., Gosling, J.T., Bame, S.J., Feldman, W.C., Wilcox, J.M.: 1981, Solar wind helium and hydrogen structure near the heliospheric current sheet: A signal of coronal streamers at 1 AU. J. Geophys. Res. 86, 4565. DOI .

    Article  ADS  Google Scholar 

  • Burlaga, L.F., Mish, W.H., Whang, Y.C.: 1990, Coalescence of recurrent streams of different sizes and amplitudes. J. Geophys. Res. 95, 4247. DOI .

    Article  ADS  Google Scholar 

  • Burlaga, L.F., Ogilvie, K.W.: 1970, Magnetic and thermal pressures in the solar wind. Solar Phys. 15, 61. DOI .

    Article  ADS  Google Scholar 

  • Burlaga, L.F., Ness, N.F., Wang, Y.-M., Sheeley, N.R. Jr.: 2002, Heliospheric magnetic field strength and polarity from 1 to 81 AU during the ascending phase of solar cycle 23. J. Geophys. Res. 107, 1410. 2002. DOI .

    Article  Google Scholar 

  • Gosling, J.T., Borrini, G., Asbridge, J.R., Bame, S.J., Feldman, W.C., Hansen, R.T.: 1981, Coronal streamers in the solar wind at 1 AU. J. Geophys. Res. 86, 5438. DOI .

    Article  ADS  Google Scholar 

  • Hundhausen, A.J.: 1977, An interplanetary view of coronal holes. In: Zirker, B. (ed.) Coronal Holes and High Speed Wind Streams, Colorado Associated University Press, Boulder, CO, 225.

    Google Scholar 

  • Issautier, K., Le Chat, G., Meyer-Vernet, N., Moncuquet, M., Hoang, S., MacDowall, R.J., McComas, D.J.: 2008, Electron properties of high-speed solar wind from polar coronal holes obtained by Ulysses thermal noise spectroscopy: Not so dense, not so hot. Geophys. Res. Lett. 35, L19101. DOI .

    Article  ADS  Google Scholar 

  • Janardhan, P., Bisoi, S.K., Ananthakrishnan, S., Tokumaru, M., Fujiki, K.: 2011, The prelude to the deep minimum between solar cycles 23 and 24: Interplanetary scintillation signatures in the heliosphere. Geophys. Res. Lett. 38, L20108. DOI .

    Article  ADS  Google Scholar 

  • Kirk, M.S., Pesnell, W.D., Young, C.A., Hess Webber, S.A.: 2009, Automated detection of EUV polar coronal holes during solar cycle 23. Solar Phys. 257, 99. DOI .

    Article  ADS  Google Scholar 

  • Liu, Y.C.-M., Huang, J., Wang, C., Klecker, B., Galvin, A.B., Simuanc, K.D.C., et al.: 2014, A statistical analysis of heliospheric plasma sheets, heliospheric current sheets, and sector boundaries observed in situ by STEREO. J. Geophys. Res. 119, 8721. DOI .

    Article  Google Scholar 

  • Luhmann, J.G., Lee, C.O., Li, Y., Arge, C.N., Galvin, A.B., Simunac, K., Russell, C.T., Howard, R.A., Petrie, G.: 2009, Solar wind sources in the late declining phase of Cycle 23: Effects of the weak solar polar field on high speed streams. Solar Phys. 256, 285. DOI .

    Article  ADS  Google Scholar 

  • McComas, D.J., Elliott, H.A., Gosling, J.T., Skoug, R.M.: 2006, Ulysses observations of very different heliospheric structure during the declining phase of solar activity cycle 23. Geophys. Res. Lett. 33, L09102. DOI .

    ADS  Google Scholar 

  • McComas, D.J., Ebert, R.W., Elliott, H.A., Goldstein, B.E., Gosling, J.T., Schwadron, N.A., Skoug, R.M.: 2008, Weaker solar wind from the polar coronal holes and the whole Sun. Geophys. Res. Lett. 35, L18103. DOI .

    Article  ADS  Google Scholar 

  • Richardson, J.D., Paularena, K.I., Lazarus, A.J., Belcher, J.W.: 1995, Radial evolution of the solar wind from IMP 8 to Voyager 2. Geophys. Res. Lett. 22, 325. DOI .

    Article  ADS  Google Scholar 

  • Rosenberg, R.L., Coleman, P.J. Jr.: 1969, Heliographic latitude dependence of the dominant polarity of the interplanetary magnetic field. J. Geophys. Res. 74, 5611. DOI .

    Article  ADS  Google Scholar 

  • Sheeley, N.R. Jr.: 2010, What’s so peculiar about the cycle 23/24 solar minimum? In: Cranmer, S.R., Todd Hoeksema, J., Kohl, J.L. (eds.) SOHO 23: Understanding a Peculiar Solar Minimum, ASP Conf. Ser. 428.

    Google Scholar 

  • Smith, E.J., Balogh, A.: 2008, Decrease in heliospheric magnetic flux in this solar minimum: Recent Ulysses magnetic field observations. Geophys. Res. Lett. 35, L22103. DOI .

    Article  ADS  Google Scholar 

  • Smith, E.J., Tsurutani, B.T., Rosenberg, R.L.: 1978, Observations of the interplanetary sector structure up to heliographic latitudes of 16 degrees, Pioneer 11. J. Geophys. Res. 83, 717. DOI .

    Article  ADS  Google Scholar 

  • Suess, S.T., Ko, Y.-K., von Steiger, R., Moore, R.L.: 2009, Quiescent current sheets in the solar wind and origins of slow wind. J. Geophys. Res. 114, A04103. DOI .

    Article  ADS  Google Scholar 

  • Wang, Y.-M., Robbrecht, E., Sheeley, N.R. Jr: 2009, On the weakening of the polar magnetic fields during solar cycle 23. Astrophys. J. 207, 1372. DOI .

    Article  ADS  Google Scholar 

  • Wang, Y.-M., Sheeley, N.R. Jr.: 1992, On potential field models of the solar corona. Astrophys. J. 392, 310. DOI .

    Article  ADS  Google Scholar 

  • Wang, Y.-M., Sheeley, N.R. Jr., Socker, D.G., Howard, R.A., Rich, N.B.: 2000, The dynamical nature of coronal streamers. J. Geophys. Res. 105, 25133. DOI .

    Article  ADS  Google Scholar 

  • Weimer, D.R., Ober, D.M., Maynard, N.C., Burke, W.J., Collier, M.R., McComas, D.J., Ness, N.F., Smith, C.W.: 2002, Variable time delays in the propagation of the interplanetary magnetic field. J. Geophys. Res. 107, 1210. DOI .

    Article  Google Scholar 

  • Wenzel, K.-P., Marsden, R.G., Page, D.E., Smith, E.J.: 1992, The Ulysses mission. Astron. Astrophys. Suppl. 92, 207.

    ADS  Google Scholar 

  • Wilcox, J.M., Hoeksema, J.T., Scherrer, P.H.: 1980, Origin of the warped heliospheric current sheet. Science 209(4456), 603. DOI .

    Article  ADS  Google Scholar 

  • Wilcox, J.M., Ness, N.F.: 1965, Quasi-stationary corotating structure in the interplanetary medium. J. Geophys. Res. 70, 5793. DOI .

    Article  ADS  Google Scholar 

  • Winterhalter, D., Smith, E.J., Burton, M.E., Murphy, N., McComas, D.J.: 1994, J. Geophys. Res. 99, 6667. DOI .

    Article  ADS  Google Scholar 

  • Wu, C.-C., Liou, K., Plunkett, S., Fry, D.G., Wu, S.-T.: 2013, Investigation of solar/heliospheric anomalies associated with the solar minimum of 2007 – 2008. Terr. Atmos. Ocean. Sci. 24, 243. DOI .

    Article  Google Scholar 

  • Wu, C.C., Liou, K., Wu, S.T., Dryer, M.: 2016, Heliospheric plasma sheet inflation as a cause of solar wind anomaly during the solar cycle 23 – 24 minimum. In: Proc. Solar Wind 14, AIP Conf. Proc. 1720, 040021. DOI .

    Google Scholar 

Download references

Acknowledgements

We acknowledge the use of Ulysses plasma and magnetic field data provided by GSFC/NSSDC at ftp://nssdcftp.gsfc.nasa.gov . Low resolution OMNI (LRO) magnetic field and plasma data set used in this study was also provided by GSFC/NSSDC. Wilcox Solar Observatory data used in this study was obtained, as courtesy of J.T. Hoeksema, via the web site http://wso.stanford.edu . We also thank Dr. Y.M. Wang (NRL), who provides extrapolated solar magnetic field at \(2.5 R_{\mathrm{s}}\) using the PFSS model. This study was partially supported by NASA grant NNX14AF83G to the Johns Hopkins University Applied Physics Laboratory. K.L. acknowledges the support of JHUAPL Janney Publication Program for preparation of the manuscript. C.C.W. was supported by the Chief of Naval Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kan Liou.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liou, K., Wu, CC. A Possible Cause of the Diminished Solar Wind During the Solar Cycle 23 – 24 Minimum. Sol Phys 291, 3777–3792 (2016). https://doi.org/10.1007/s11207-016-0989-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-016-0989-8

Keywords

Navigation