Skip to main content
Log in

A Time–Distance Helioseismology Method for Quasi-Linear Geometries

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Helioseismology is the study of the solar interior, through which we extract flow and wave-speed information from Doppler velocity observations at the surface. Local helioseismology involves the study of small regions on the solar disk and is used to create a detailed picture of the interior in that particular region. Perturbations in the flow and wave-speed results indicate, e.g. magnetic-flux or temperature variations. There are multiple methods used in local-helioseismic research, but all current local-helioseismic techniques assume a point-source perturbation. For this study, we develop a new time–distance (TD) helioseismic methodology that can exploit the quasi-linear geometry of an elongated feature, allowing us to i) improve the signal-to-noise ratio of the TD results, and ii) greatly decrease the number of calculations required and therefore the computing time of the TD analysis. Ultimately, the new method will allow us to investigate solar features with magnetic-field configurations previously unexplored. We validate our new technique using a simple \(f\)-mode wave simulation, comparing results of point-source and linear perturbations. Results indicate that local-helioseismic analysis is dependent on the geometry of the system and can be improved by taking the magnetic-field configuration into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  • Cameron, R., Gizon, L., Duvall, T.L. Jr.: 2008, Helioseismology of sunspots: confronting observations with three-dimensional MHD simulations of wave propagation. Solar Phys.251, 291. DOI . ADS .

    Article  ADS  Google Scholar 

  • Couvidat, S., Zhao, J., Birch, A.C., Kosovichev, A.G., Duvall, T.L. Jr., Parchevsky, K., Scherrer, P.H.: 2012, Implementation and comparison of acoustic travel-time measurement procedures for the Solar Dynamics Observatory/Helioseismic and Magnetic Imager time–distance helioseismology pipeline. Solar Phys.275, 357. DOI . ADS .

    Article  ADS  Google Scholar 

  • Domingo, V., Fleck, B., Poland, A.I.: 1995, The SOHO mission: an overview. Solar Phys.162, 1. DOI . ADS .

    Article  ADS  Google Scholar 

  • Duvall, T.L. Jr., Gizon, L.: 2000, Time–distance helioseismology with \(f\) modes as a method for measurement of near-surface flows. Solar Phys.192, 177. ADS .

    Article  ADS  Google Scholar 

  • Duvall, T.L. Jr., Jefferies, S.M., Harvey, J.W., Pomerantz, M.A.: 1993, Time–distance helioseismology. Nature362, 430. DOI . ADS .

    Article  ADS  Google Scholar 

  • Duvall, T.L. Jr., Kosovichev, A.G., Scherrer, P.H., Milford, P.N.: 1996, Detection of subsurface supergranulation structure and flows from MDI high-resolution data using time–distance techniques. In: American Astronomical Society Meeting Abstracts #188, Bull. Am. Astron. Soc.28, 898. ADS .

    Google Scholar 

  • Duvall, T.L. Jr., Kosovichev, A.G., Scherrer, P.H., Bogart, R.S., Bush, R.I., De Forest, C., Hoeksema, J.T., Schou, J., Saba, J.L.R., Tarbell, T.D., Title, A.M., Wolfson, C.J., Milford, P.N.: 1997, Time–distance helioseismology with the MDI instrument: initial results. Solar Phys.170, 63.

    Article  ADS  Google Scholar 

  • Giles, P.M.M.: 1999, Time–distance measurements of large scale flows in the solar convection zone. PhD thesis, Stanford University. Chapter 2.

  • Gizon, L., Birch, A.C.: 2004, Time–distance helioseismology: noise estimation. Astrophys. J.614, 472. DOI .

    Article  ADS  Google Scholar 

  • Gizon, L., Birch, A.C.: 2005, Local helioseismology. Liv. Rev. Solar Phys.2, 6. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gizon, L., Birch, A.C., Spruit, H.C.: 2010, Local helioseismology: three-dimensional imaging of the solar interior. Annu. Rev. Astron. Astrophys.48, 289. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gouédard, P., Stehly, L., Brenguier, F., Campillo, M., Colin de Verdière, Y., Larose, E., Margerin, L., Roux, P., Sánchez-Sesma, F.J., Shapiro, N.M., Weaver, R.L.: 2008, Cross-correlation of random fields: mathematical approach and applications. Geophys. Prospect.56, 375. DOI .

    Article  ADS  Google Scholar 

  • Hess Webber, S.A.: 2016, Coronal holes and solar \(f\)-mode wave scattering off linear boundaries. PhD Thesis, George Mason University. DOI . ADS .

  • Hill, F.: 1988, Rings and trumpets – three-dimensional power spectra of solar oscillations. Astrophys. J.333, 996. DOI . ADS .

    Article  ADS  Google Scholar 

  • Hindman, B.W., Gizon, L., Duvall, T.L. Jr., Haber, D.A., Toomre, J.: 2004, Comparison of solar subsurface flows assessed by ring and time–distance analyses. Astrophys. J.613, 1253. DOI . ADS .

    Article  ADS  Google Scholar 

  • Howe, R., Haber, D.A., Bogart, R.S., Zharkov, S., Baker, D., Harra, L., van Driel-Gesztelyi, L.: 2013, Can we detect local helioseismic parameter shifts in coronal holes? J. Phys. Conf. Ser.440, 012019.

    Article  Google Scholar 

  • Ilonidis, S., Zhao, J., Kosovichev, A.: 2011, Detection of emerging sunspot regions in the solar interior. Science333, 993. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lindsey, C., Braun, D.C.: 1997, Helioseismic holography. Astrophys. J.485, 895. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lindsey, C., Braun, D.C., Jefferies, S.M.: 1993, Local helioseismology of subsurface structure. In: Brown, T.M. (ed.) GONG 1992. Seismic Investigation of the Sun and Stars, CS-42, Astron. Soc. Pacific, San Francisco, 81. ADS .

    Google Scholar 

  • Lobkis, O.I., Weaver, R.L.: 2001, On the emergence of the Green’s function in the correlations of a diffuse field. J. Acoust. Soc. Am.110, 3011. DOI .

    Article  ADS  Google Scholar 

  • Pesnell, W.D., Thompson, B.J., Chamberlin, P.C.: 2012, The Solar Dynamics Observatory (SDO). Solar Phys.275, 3. DOI . ADS .

    Article  ADS  Google Scholar 

  • Scherrer, P.H., Bogart, R.S., Bush, R.I., Hoeksema, J.T., Kosovichev, A.G., Schou, J., Rosenberg, W., Springer, L., Tarbell, T.D., Title, A., Wolfson, C.J., Zayer, I. (MDI Engineering Team): 1995, The solar oscillations investigation – Michelson Doppler Imager. Solar Phys.162, 129. DOI . ADS .

    Article  ADS  Google Scholar 

  • Schou, J.: 2004, Low frequency modes. In: Danesy, D. (ed.) SOHO 14 Helio- and Asteroseismology: Towards a Golden Future, SP-559, ESA, Noordwijk, 134. ADS .

    Google Scholar 

  • Schou, J., Scherrer, P.H., Bush, R.I., Wachter, R., Couvidat, S., Rabello-Soares, M.C., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Akin, D.J., Allard, B.A., Miles, J.W., Rairden, R., Shine, R.A., Tarbell, T.D., Title, A.M., Wolfson, C.J., Elmore, D.F., Norton, A.A., Tomczyk, S.: 2012, Design and ground calibration of the Helioseismic and Magnetic Imager (HMI) instrument on the Solar Dynamics Observatory (SDO). Solar Phys.275, 229. DOI . ADS .

    Article  ADS  Google Scholar 

  • Tsai, V.C.: 2010, The relationship between noise correlation and the Green’s function in the presence of degeneracy and the absence of equipartition. Geophys. J. Int.182, 1509. DOI . ADS .

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This research was conducted mainly at George Mason University and NASA’s Goddard Space Flight Center with the support of NASA’s SDO mission, with collaborations at Stanford University and Max Planck Institute for Solar System Research. The project is now being continued through NASA contract NAS5-02139 (HMI) at Stanford University. All SDO/AIA and HMI data are archived and made available by the Joint Science Operations Center (JSOC: jsoc.stanford.edu/). The authors would like to thank T. Duvall, R. Cameron, and A. Birch for their theoretical guidance and implementation help on this project. The authors would also like to thank B. Hindman and L. Gizon for permitting the use of their figures in this article (Figures 1 and 6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shea A. Hess Webber.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hess Webber, S.A., Pesnell, W.D. A Time–Distance Helioseismology Method for Quasi-Linear Geometries. Sol Phys 294, 151 (2019). https://doi.org/10.1007/s11207-019-1547-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-019-1547-y

Keywords

Navigation