Skip to main content
Log in

Global Solar Magnetic Field and Interplanetary Scintillations During the Past Four Solar Cycles

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

The extended minimum of Solar Cycle 23, the extremely quiet solar-wind conditions prevailing and the mini-maximum of Solar Cycle 24 drew global attention and many authors have since attempted to predict the amplitude of the upcoming Solar Cycle 25, which is predicted to be the third successive weak cycle; it is a unique opportunity to probe the Sun during such quiet periods. Earlier work has established a steady decline, over two decades, in solar photospheric fields at latitudes above \(45^{\circ}\) and a similar decline in solar-wind micro-turbulence levels as measured by interplanetary scintillation (IPS) observations. However, the relation between the photospheric magnetic fields and those in the low corona/solar-wind are not straightforward. Therefore, in the present article, we have used potential-field source-surface (PFSS) extrapolations to deduce global magnetic fields using synoptic magnetograms observed with National Solar Observatory (NSO), Kitt Peak, USA (NSO/KP) and Solar Optical Long-term Investigation of the Sun (NSO/SOLIS) instruments during 1975 – 2018. Furthermore, we have measured the normalized scintillation index [\(m\)] using the IPS observations carried out at the Institute of Space–Earth Environment Research (ISEE), Japan during 1983 – 2017. From these observations, we have found that, since the mid-1990s, the magnetic field over different latitudes at \(2.5~\mathrm{R}_{\odot}\) and \(10~\mathrm{R}_{\odot}\) (extrapolated using the PFSS method) has decreased by \({\approx}\,11.3\,\mbox{--}\,22.2\%\). In phase with the declining magnetic fields, the quantity \(m\) also declined by \({\approx}\, 23.6\%\). These observations emphasize the inter-relationship among the global magnetic field and various turbulence parameters in the solar corona and solar-wind.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Altschuler, M.D., Newkirk, G.: 1969, Magnetic fields and the structure of the solar corona. I: Methods of calculating coronal fields. Solar Phys. 9, 131. DOI . ADS .

    Article  ADS  Google Scholar 

  • Ananthakrishnan, S., Coles, W.A., Kaufman, J.J.: 1980, Microturbulence in solar wind streams. J. Geophys. Res. 85, 6025. DOI . ADS .

    Article  ADS  Google Scholar 

  • Arnaud, J., Newkirk, G. Jr.: 1987, Mean properties of the polarization of the Fe XIII 10747 A coronal emission line. Astron. Astrophys. 178, 263. ADS .

    ADS  Google Scholar 

  • Asai, K., Kojima, M., Tokumaru, M., Yokobe, A., Jackson, B.V., Hick, P.L., Manoharan, P.K.: 1998, Heliospheric tomography using interplanetary scintillation observations. III – Correlation between speed and electron density fluctuations in the solar wind. J. Geophys. Res. 103, 1991. DOI . ADS .

    Article  ADS  Google Scholar 

  • Bird, M.K.: 1981, Coronal sounding with pulsars. In: Rosenbauer, H. (ed.) Solar Wind 4, Max-Planck-Institute für Aeronomie, Lindau, 78. ADS .

    Google Scholar 

  • Bird, M.K.: 1982, Coronal investigations with occulted spacecraft signals. Space Sci. Rev. 33, 99. DOI . ADS .

    Article  ADS  Google Scholar 

  • Bisoi, S.K., Janardhan, P., Ingale, M., Subramanian, P., Ananthakrishnan, S., Tokumaru, M., Fujiki, K.: 2014, A study of density modulation index in the inner heliospheric solar wind during solar cycle 23. Astrophys. J. 795, 69. DOI . ADS .

    Article  ADS  Google Scholar 

  • Celnikier, L.M., Muschietti, L., Goldman, M.V.: 1987, Aspects of interplanetary plasma turbulence. Astron. Astrophys. 181(1), 138. ADS .

    ADS  Google Scholar 

  • Clette, F., Svalgaard, L., Vaquero, J.M., Cliver, E.W.: 2015, In: Balogh, A., Hudson, H., Petrovay, K., von Steiger, R. (eds.) Revisiting the Sunspot Number, ISSI Space Science Ser., Springer, New York, 35. DOI . ADS .

    Chapter  Google Scholar 

  • Fox, N.J., Velli, M.C., Bale, S.D., Decker, R., Driesman, A., Howard, R.A., Kasper, J.C., Kinnison, J., Kusterer, M., Lario, D., Lockwood, M.K., McComas, D.J., Raouafi, N.E., Szabo, A.: 2016, The solar probe plus mission: Humanity’s first visit to our star. Space Sci. Rev. 204, 7. DOI . ADS .

    Article  ADS  Google Scholar 

  • Freeland, S.L., Handy, B.N.: 1998, Data analysis with the SolarSoft system. Solar Phys. 182, 497. DOI . ADS .

    Article  ADS  Google Scholar 

  • Hale, G.E.: 1908, On the probable existence of a magnetic field in Sun-spots. Astrophys. J. 28, 315. DOI . ADS .

    Article  ADS  Google Scholar 

  • Harvey, J.W.: 1969, Magnetic fields associated with solar active-region prominences. Ph.D. thesis, Univ. Colorado, Boulder. ADS .

  • Hewish, A., Scott, P.F., Wills, D.: 1964, Interplanetary scintillation of small diameter radio sources. Nature 203, 1214. DOI . ADS .

    Article  ADS  Google Scholar 

  • Hoeksema, J.T.: 1984, Structure and evolution of the large scale solar and heliospheric magnetic fields. Ph.D. thesis, Stanford Univ., CA. sun.stanford.edu/~todd/Hoeksema1984.pdf . ADS .

  • Janardhan, P., Alurkar, S.K.: 1993, Angular source size measurements and interstellar scattering at 103 MHz using interplanetary scintillation. Astron. Astrophys. 269, 119. ADS .

    ADS  Google Scholar 

  • Janardhan, P., Bisoi, S.K., Gosain, S.: 2010, Solar polar fields during cycles 21 – 23: Correlation with meridional flows. Solar Phys. 267, 267. DOI . ADS .

    Article  ADS  Google Scholar 

  • Janardhan, P., Balasubramanian, V., Ananthakrishnan, S., Dryer, M., Bhatnagar, A., McIntosh, P.S.: 1996, Travelling interplanetary disturbances detected using interplanetary scintillation at 327 MHz. Solar Phys. 166, 379. DOI . ADS .

    Article  ADS  Google Scholar 

  • Janardhan, P., Bisoi, S.K., Ananthakrishnan, S., Tokumaru, M., Fujiki, K.: 2011, The prelude to the deep minimum between solar cycles 23 and 24: Interplanetary scintillation signatures in the inner heliosphere. Geophys. Res. Lett. 38, L20108. DOI . ADS .

    Article  ADS  Google Scholar 

  • Janardhan, P., Bisoi, S.K., Ananthakrishnan, S., Tokumaru, M., Fujiki, K., Jose, L., Sridharan, R.: 2015, A 20 year decline in solar photospheric magnetic fields: Inner-heliospheric signatures and possible implications. J. Geophys. Res. 120, 5306. DOI . ADS .

    Article  Google Scholar 

  • Janardhan, P., Fujiki, K., Ingale, M., Bisoi, S.K., Rout, D.: 2018, Solar cycle 24: An unusual polar field reversal. Astron. Astrophys. 618, A148. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kojima, M., Kakinuma, T.: 1990, Solar cycle dependence of global distribution of solar wind speed. Space Sci. Rev. 53(3 – 4), 173. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lin, H., Penn, M.J., Tomczyk, S.: 2000, A new precise measurement of the coronal magnetic field strength. Astrophys. J. Lett. 541, L83. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lopez, R.E., Freeman, J.W.: 1986, Solar wind proton temperature–velocity relationship. J. Geophys. Res. 91(A2), 1701. DOI . ADS .

    Article  ADS  Google Scholar 

  • Mackay, D.H., van Ballegooijen, A.A.: 2006, Models of the large-scale corona. I. Formation, evolution, and liftoff of magnetic flux ropes. Astrophys. J. 641, 577. DOI . ADS .

    Article  ADS  Google Scholar 

  • Manoharan, P.K.: 2010, Ooty interplanetary scintillation – Remote-sensing observations and analysis of coronal mass ejections in the heliosphere. Solar Phys. 265, 137. DOI . ADS .

    Article  ADS  Google Scholar 

  • Marians, M.: 1975, Computed scintillation spectra for strong turbulence. Radio Sci. 10, 115. DOI . ADS .

    Article  ADS  Google Scholar 

  • McComas, D.J., Barraclough, B.L., Funsten, H.O., Gosling, J.T., Santiago-Muñoz, E., Skoug, R.M., Goldstein, B.E., Neugebauer, M., Riley, P., Balogh, A.: 2000, Solar wind observations over Ulysses’ first full polar orbit. J. Geophys. Res. 105(A5), 10419. DOI . ADS .

    Article  ADS  Google Scholar 

  • Mickey, D.L.: 1973, Polarization measurements in the green coronal line. Astrophys. J. Lett. 181, L19. DOI . ADS .

    Article  ADS  Google Scholar 

  • Pesnell, W.D., Schatten, K.H.: 2018, An early prediction of the amplitude of solar cycle 25. Solar Phys. 293, 112. DOI . ADS .

    Article  ADS  Google Scholar 

  • Querfeld, C.W., Smartt, R.N.: 1984, Comparison of coronal emission-line structure and polarization. Solar Phys. 91, 299. DOI . ADS .

    Article  ADS  Google Scholar 

  • Ramesh, R., Kathiravan, C., Sastry, C.V.: 2010, Estimation of magnetic field in the solar coronal streamers through low frequency radio observations. Astrophys. J. 711, 1029. DOI . ADS .

    Article  ADS  Google Scholar 

  • Sasikumar Raja, K., Ramesh, R.: 2013, Low-frequency observations of transient quasi-periodic radio emission from the solar atmosphere. Astrophys. J. 775, 38. DOI . ADS .

    Article  ADS  Google Scholar 

  • Sasikumar Raja, K., Ramesh, R., Hariharan, K., Kathiravan, C., Wang, T.J.: 2014, An estimate of the magnetic field strength associated with a solar coronal mass ejection from low frequency radio observations. Astrophys. J. 796, 56. DOI . ADS .

    Article  ADS  Google Scholar 

  • Sasikumar Raja, K., Ingale, M., Ramesh, R., Subramanian, P., Manoharan, P.K., Janardhan, P.: 2016, Amplitude of solar wind density turbulence from 10 to 45 \(R_{\odot }\). J. Geophys. Res. 121, 11. DOI . ADS .

    Article  Google Scholar 

  • Sasikumar Raja, K., Subramanian, P., Ramesh, R., Vourlidas, A., Ingale, M.: 2017, Turbulent density fluctuations and proton heating rate in the solar wind from 9-20 \(R_{\odot }\). Astrophys. J. 850, 129. DOI . ADS .

    Article  ADS  Google Scholar 

  • Sasikumar Raja, K., Subramanian, P., Ingale, M., Ramesh, R.: 2019, Dissipation scale lengths of solar wind turbulence. Astrophys. J. 872, 77. DOI . ADS .

    Article  ADS  Google Scholar 

  • Sastry, C.V.: 2009, Polarization of the thermal radio emission from outer solar corona. Astrophys. J. 697, 1934. DOI . ADS .

    Article  ADS  Google Scholar 

  • Schatten, K.H., Wilcox, J.M., Ness, N.F.: 1969, A model of interplanetary and coronal magnetic fields. Solar Phys. 6, 442. DOI . ADS .

    Article  ADS  Google Scholar 

  • Schrijver, C.J., De Rosa, M.L.: 2003, Photospheric and heliospheric magnetic fields. Solar Phys. 212, 165. DOI . ADS .

    Article  ADS  Google Scholar 

  • Schrijver, C.J., Title, A.M.: 2003, The magnetic connection between the solar photosphere and the corona. Astrophys. J. Lett. 597, L165. DOI . ADS .

    Article  ADS  Google Scholar 

  • Stelzried, C.T., Levy, G.S., Sato, T., Rusch, W.V.T., Ohlson, J.E., Schatten, K.H., Wilcox, J.M.: 1970, The quasi-stationary coronal magnetic field and electron density as determined from a Faraday rotation experiment. Solar Phys. 14, 440. DOI . ADS .

    Article  ADS  Google Scholar 

  • Tokumaru, M., Kojima, M., Fujiki, K.: 2010, Solar cycle evolution of the solar wind speed distribution from 1985 to 2008. J. Geophys. Res. 115, A04102. DOI . ADS .

    Article  ADS  Google Scholar 

  • van Ballegooijen, A.A., Priest, E.R., Mackay, D.H.: 2000, Mean field model for the formation of filament channels on the Sun. Astrophys. J. 539, 983. DOI . ADS .

    Article  ADS  Google Scholar 

  • Venugopal, V.R., Ananthakrishnan, S., Swarup, G., Pynzar, A.V., Udaltsov, V.A.: 1985, Structure of PKS 1148-001. Mon. Not. Roy. Astron. Soc. 215, 685. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wang, Y.-M., Sheeley, N.R. Jr.: 1992, On potential field models of the solar corona. Astrophys. J. 392, 310. DOI . ADS .

    Article  ADS  Google Scholar 

  • Zhao, X., Hoeksema, J.T.: 1995, Prediction of the interplanetary magnetic field strength. J. Geophys. Res. 100, 19. DOI . ADS .

    Article  ADS  Google Scholar 

Download references

Acknowledgments

K.S. Raja acknowledges Marc L. De Rosa for his valuable suggestions related to the PFSS extrapolation technique. K.S. Raja acknowledges the financial support from Centre National d’études Spatiales (CNES), France. This work utilizes SOLIS data obtained by the NSO Integrated Synoptic Program (NISP), managed by the National Solar Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc. under a cooperative agreement with the National Science Foundation. Data storage supported by the University of Colorado Boulder “PetaLibrary.” Sunspot data from the World Data Center SILSO, Royal Observatory of Belgium, Brussels. The authors would like to thank the anonymous reviewer for their constructive suggestions and comments, which helped in improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Sasikumar Raja.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sasikumar Raja, K., Janardhan, P., Bisoi, S.K. et al. Global Solar Magnetic Field and Interplanetary Scintillations During the Past Four Solar Cycles. Sol Phys 294, 123 (2019). https://doi.org/10.1007/s11207-019-1514-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-019-1514-7

Keywords

Navigation