Skip to main content
Log in

Cosmic Ray Modulation with the Maximum CME Speed Index During Solar Cycles 23 and 24

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We analyzed modulation of cosmic-ray intensities (CRIs) during Solar Cycles 23 and 24 by using the international sunspot numbers (ISSN) and the maximum CME speed index (MCMESI) as proxies for solar activity. Temporal variations, cross-correlations, and hysteresis patterns of CRI, MCMESI, and ISSN data were investigated. As a result, we concluded that the MCMESI better describes solar modulation of the CRI as compared to the ISSN. This is mainly because the correlation between CRI and ISSN is caused by the general cyclic trend of solar activity, while the correlation between the CRI and the MCMESI is mainly due to short-term fluctuations related to Forbush decreases. In contrast to the ISSN, there is no time lag between the CRI and the MCMESI variations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Notes

  1. www.nmdb.eu/ .

  2. cosmicrays.oulu.fi/ .

  3. cdaw.gsfc.nasa.gov/CME_list/ .

References

  • Aslam, O.P.M., Badruddin: 2015, Study of cosmic-ray modulation during the recent unusual minimum and mini-maximum of Solar Cycle 24. Solar Phys. 290, 2333. DOI . ADS .

    Article  ADS  Google Scholar 

  • Badruddin, Singh, M., Singh, Y.P.: 2007, Modulation loops, time lag and relationship between cosmic ray intensity and tilt of the heliospheric current sheet. Astron. Astrophys. 466, 697. DOI . ADS .

    Article  ADS  Google Scholar 

  • Balasubrahmanyan, V.K.: 1969, Solar activity and the 11-year modulation of cosmic rays. Solar Phys. 7, 39. DOI . ADS .

    Article  ADS  Google Scholar 

  • Ball, P.C., Evans, R.: 1989, Temperature dependence of gas adsorption on a mesoporous solid: Capillary criticality and hysteresis. Langmuir 5, 714. DOI .

    Article  Google Scholar 

  • Belov, A.: 2000, Large scale modulation: View from the Earth. In: Bieber, J.W., Eroshenko, E., Evenson, P., Flückiger, E.O., Kallenbach, R. (eds.) Cosmic Rays and Earth, Springer, Dordrecht, 79.

    Chapter  Google Scholar 

  • Belov, A.V., Gushchina, R.T.: 2018, Index of the long-term influence of sporadic solar activity on cosmic ray modulation. Geomagn. Aeron. 58, 1. DOI . ADS .

    Article  ADS  Google Scholar 

  • Belov, A., Abunin, A., Abunina, M., Eroshenko, E., Oleneva, V., Yanke, V., Papaioannou, A., Mavromichalaki, H., Gopalswamy, N., Yashiro, S.: 2014, Coronal mass ejections and non-recurrent Forbush decreases. Solar Phys. 289, 3949. DOI . ADS .

    Article  ADS  Google Scholar 

  • Cane, H.V., Richardson, I.G., von Rosenvinge, T.T.: 1996, Cosmic ray decreases: 1964 – 1994. J. Geophys. Res. 101, 21561. DOI . ADS .

    Article  ADS  Google Scholar 

  • Chowdhury, P., Kudela, K., Moon, Y.-J.: 2016, A study of heliospheric modulation and periodicities of galactic cosmic rays during Cycle 24. Solar Phys. 291, 581. DOI . ADS .

    Article  ADS  Google Scholar 

  • Clette, F., Lefèvre, L.: 2016, The new sunspot number: Assembling all corrections. Solar Phys. 291, 2629. DOI . ADS .

    Article  ADS  Google Scholar 

  • Forbush, S.E.: 1938, On cosmic-ray effects associated with magnetic storms. Terr. Magn. Atmos. Electr. 43, 203. DOI .

    Article  Google Scholar 

  • Forbush, S.E.: 1954, World-wide cosmic-ray variations, 1937 – 1952. J. Geophys. Res. 59, 525. DOI . ADS .

    Article  ADS  Google Scholar 

  • Forbush, S.E.: 1958, Cosmic-ray intensity variations during two solar cycles. J. Geophys. Res. 63, 651. DOI . ADS .

    Article  ADS  Google Scholar 

  • Jones, G.H., Balogh, A., Smith, E.J.: 2003, Solar magnetic field reversal as seen at Ulysses. Geophys. Res. Lett. 30, 8028. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kane, R.P.: 2003, Lags, hysteresis, and double peaks between cosmic rays and solar activity. J. Geophys. Res. Space Phys. 108, 1379. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kilcik, A., Yurchyshyn, V.B., Abramenko, V., Goode, P.R., Gopalswamy, N., Ozguc, A., Rozelot, J.P.: 2011, Maximum coronal mass ejection speed as an indicator of solar and geomagnetic activities. Astrophys. J. 727, 44. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kramer, B.P., Fussenegger, M.: 2005, Hysteresis in a synthetic mammalian gene network. Proc. Natl. Acad. Sci. USA 102, 9517. DOI .

    Article  ADS  Google Scholar 

  • Krasnosel’skií, M.A., Pokrovskií, A.V.: 1989, Systems with Hysteresis, 1st edn. Springer, Berlin. 978-3-642-64782-6. DOI .

    Book  MATH  Google Scholar 

  • Lara, A., Gopalswamy, N., Caballero-López, R.A., Yashiro, S., Xie, H., Valdés-Galicia, J.F.: 2005, Coronal mass ejections and galactic cosmic-ray modulation. Astrophys. J. 625, 441. DOI . ADS .

    Article  ADS  Google Scholar 

  • Mavromichalaki, H., Paouris, E.: 2012, Long-term cosmic ray variability and the CME-index. Adv. Astron. 2012, 607172. DOI . ADS .

    Article  ADS  Google Scholar 

  • Mikić, Z., Lee, M.A.: 2006, An introduction to theory and models of CMEs, shocks, and solar energetic particles. Space Sci. Rev. 123, 57. DOI . ADS .

    Article  ADS  Google Scholar 

  • Mishra, V.K., Mishra, A.P.: 2016, Study of solar activity and cosmic ray modulation during Solar Cycle 24 in comparison to previous solar cycle. Indian J. Phys. 90, 1333. DOI . ADS .

    Article  ADS  Google Scholar 

  • Parker, E.N.: 1965, The passage of energetic charged particles through interplanetary space. Planet. Space Sci. 13, 9. DOI . ADS .

    Article  ADS  Google Scholar 

  • Penna, R.F., Quillen, A.C.: 2005, Decay of interplanetary coronal mass ejections and Forbush decrease recovery times. J. Geophys. Res. Space Phys. 110, A09S05. DOI . ADS .

    Article  ADS  Google Scholar 

  • Preisach, F.: 1935, Über die magnetische Nachwirkung. Z. Phys. 94, 277. DOI . ADS .

    Article  ADS  Google Scholar 

  • Reid, G.C., Leinbach, H.: 1959, Low-energy cosmic-ray events associated with solar flares. J. Geophys. Res. 64, 1801. DOI . ADS .

    Article  ADS  Google Scholar 

  • Shea, M.A., Smart, D.F., Humble, J.E., Fluckiger, E.O., Gentile, L.C., Humble, J.E., Nichol, M., Shea, M.A., Smart, D.F.: 1987, A revised standard format for cosmic ray ground-level event data. In: Kozyarivsky, V.A., Lidvansky, A.S., Tulupova, T.I., Tayabuk, A.L., Voevodsky, A.V., Volgemut, N.S. (eds.) Internat. Cosmic Ray Conf. 3, Nauka, Moscow, 171. ADS .

    Google Scholar 

  • Singh, S., Mishra, A.P.: 2018, Cosmic ray intensity increases during high solar activity period for the Solar Cycles 22 and 23. Indian J. Phys. DOI .

    Article  Google Scholar 

  • Snyder, C.W., Neugebauer, M., Rao, U.R.: 1963, The solar wind velocity and its correlation with cosmic-ray variations and with solar and geomagnetic activity. J. Geophys. Res. 68, 6361. DOI . ADS .

    Article  ADS  Google Scholar 

  • Stoner, E.C., Wohlfarth, E.P.: 1948, A mechanism of magnetic hysteresis in heterogeneous alloys. Phil. Trans. Roy. Soc. London A, Math. Phys. Eng. Sci. 240, 599. DOI . ADS .

    Article  ADS  MATH  Google Scholar 

  • Sun, W., Xue, Y.: 2018, An improved fuzzy comprehensive evaluation system and application for risk assessment of floor water inrush in deep mining. Geotech. Geolog. Eng. 37, 1135. DOI .

    Article  Google Scholar 

  • Tomassetti, N., Orcinha, M., Barão, F., Bertucci, B.: 2017, Evidence for a time lag in solar modulation of galactic cosmic rays. Astrophys. J. Lett. 849, L32. DOI . ADS .

    Article  ADS  Google Scholar 

  • Usoskin, I.G.: 2017, A history of solar activity over millennia. Living Rev. Solar Phys. 14, 3. DOI . ADS .

    Article  ADS  Google Scholar 

  • Usoskin, I.G., Mursula, K., Kangas, J.: 2001, On-line database of cosmic ray intensities. In: Kampert, K.H., Heinzelmann, G., Spirering, C. (eds.) Proc. 27th Internat. Cosmic Ray Conf. 9, Internat. Union Pure Appl. Phys., Hamburg, 3842. ADS .

    Google Scholar 

  • Visintin, A.: 2006, Mathematical models of hysteresis. In: Bertotti, G., Mayergoyz, I.D. (eds.) The Science of Hysteresis, Elsevier, Oxford, 1. 978-0-12-480874-4. DOI .

    Chapter  MATH  Google Scholar 

  • Wawrzynczak, A., Alania, M.V.: 2008, Modeling of the recurrent Forbush effect of the galactic cosmic ray intensity and comparison with the experimental data. Adv. Space Res. 41, 325. DOI . ADS .

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We acknowledge the NMDB database , founded under the European Union’s FP7 programme (contract no. 213007) for providing Hermanus Neutron Monitor data. CRI data were also taken from Oulu Neutron Monitor . The ISSN data were taken from the World Data Center, Sunspot Index and Long-term Solar Observations (SILSO), Royal Observatory of Belgium. The MCMESI data were calculated by using the CME catalog provided by the Solar and Heliospheric Observatory (SOHO) mission’s Large Angle and Spectrometric Coronagraph (LASCO). This work was supported by the Scientific and Technological Research Council of Turkey (TUBİTAK) by the Project of 115F031.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volkan Sarp.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarp, V., Kilcik, A., Yurchyshyn, V. et al. Cosmic Ray Modulation with the Maximum CME Speed Index During Solar Cycles 23 and 24. Sol Phys 294, 86 (2019). https://doi.org/10.1007/s11207-019-1481-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-019-1481-z

Keywords

Navigation