Skip to main content
Log in

Turbulent Heating in the Accelerating Region Using a Multishell Model

  • T.I. : Solar Wind 15
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Recent studies of turbulence-driven solar winds indicate that fast winds are obtained only at the price of unrealistic bottom boundary conditions: too large wave amplitudes and small frequencies. In this work, the incompressible turbulent dissipation is modeled with a large-scale von Karman–Howarth–Kolmogorov-like phenomenological expression (\(Q_{\text{K41}}^{0}\)). An evaluation of the phenomenology is thus necessary to understand if unrealistic boundary conditions result from physical or model limitations. To assess the validity of the Kolmogorov-like expression, \(Q_{\text{K41}}^{0}\), one needs to compare it to exact heating, which requires describing the cascade in detail. This has been done in the case of homogeneous MHD turbulence, including expansion, but not in the critical accelerating region. To assess the standard incompressible turbulent heating in the accelerating region, we use a reduced MHD model (multishell model) in which the perpendicular turbulent cascade is described by a shell model, allowing to reach a Reynolds number of \(10^{6}\). We first consider the homogeneous and expanding cases, and find that primitive MHD and multishell equations give remarkably similar results. We thus feel free to use the multishell model in the accelerating region. The results indicate that the large-scale phenomenology is inaccurate and it overestimates the heating by a factor at least 20, thus invalidating earlier studies of winds driven by incompressible turbulence. We conclude that realistic 1D wind models cannot be based solely on incompressible turbulence, but probably need an addition of compressible turbulence and shocks to increase the wave reflection and thus the heating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Notes

  1. We define turbulent solar wind models those models that incorporate incompressible turbulence in a self-consistent way, i.e., by integrating simultaneously the equations of the solar wind and of incompressible turbulence. We thus exclude from this definition transport models, i.e. studies of the evolution of turbulent fluctuations in a given, not evolving, solar wind profile, as done in this paper.

  2. Such a long time is necessary to achieve the relaxation of the reflected fluctuations, \(z_{-}\), which have a much longer crossing time than \(z_{+}\).

References

  • Beresnyak, A.: 2012, Basic properties of magnetohydrodynamic turbulence in the inertial range. Mon. Not. Roy. Astron. Soc. 422, 3495. DOI . ADS .

    Article  ADS  Google Scholar 

  • Bruno, R., Carbone, V.: 2013, The solar wind as a turbulence laboratory. Living Rev. Solar Phys. 10, 2. DOI .

    Article  ADS  Google Scholar 

  • Buchlin, E., Velli, M.: 2007, Shell models of RMHD turbulence and the heating of solar coronal loops. Astrophys. J. 662, 701. DOI . ADS .

    Article  ADS  Google Scholar 

  • Chandran, B.D.G., Dennis, T.J., Quataert, E., Bale, S.D.: 2011, Incorporating kinetic physics into a two-fluid solar-wind model with temperature anisotropy and low-frequency Alfvén-wave turbulence. Astrophys. J. 743, 197. DOI . ADS .

    Article  ADS  Google Scholar 

  • Cranmer, S.R., van Ballegooijen, A.A., Edgar, R.J.: 2007, Self-consistent coronal heating and solar wind acceleration from anisotropic magnetohydrodynamic turbulence. Astrophys. J. Suppl. Ser. 171, 520. DOI . ADS .

    Article  ADS  Google Scholar 

  • Del Zanna, L., Matteini, L., Landi, S., Verdini, A., Velli, M.: 2015, Parametric decay of parallel and oblique Alfvén waves in the expanding solar wind. J. Plasma Phys. 81(1), 325810102. DOI . ADS .

    Article  Google Scholar 

  • Dmitruk, P., Milano, L.J., Matthaeus, W.H.: 2001, Wave-driven turbulent coronal heating in open field line regions: Nonlinear phenomenological model. Astrophys. J. 548, 482. DOI . ADS .

    Article  ADS  Google Scholar 

  • Dmitruk, P., Matthaeus, W.H., Milano, L.J., Oughton, S., Zank, G.P., Mullan, D.J.: 2002, Coronal heating distribution due to low-frequency, wave-driven turbulence. Astrophys. J. 575, 571. DOI . ADS .

    Article  ADS  Google Scholar 

  • Dong, Y., Verdini, A., Grappin, R.: 2014, Evolution of turbulence in the expanding solar wind, a numerical study. Astrophys. J. 793(2), 118. DOI . ADS .

    Article  ADS  Google Scholar 

  • Giuliani, P., Carbone, V.: 1998, A note on shell models for MHD turbulence. Europhys. Lett. 43, 527. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gledzer, E.B.: 1973, System of hydrodynamic type admitting two quadratic integrals of motion. Sov. Phys. Dokl. 18, 216. ADS .

    ADS  MATH  Google Scholar 

  • Grappin, R., Velli, M., Mangeney, A.: 1993, Nonlinear wave evolution in the expanding solar wind. Phys. Rev. Lett. 70(1), 2190.

    Article  ADS  Google Scholar 

  • Hossain, M., Gray, P.C., Pontius, D.H.J., Matthaeus, W.H., Oughton, S.: 1995, Phenomenology for the decay of energy-containing eddies in homogeneous MHD turbulence. Phys. Fluids 7(1), 2886. DOI .

    Article  ADS  MATH  Google Scholar 

  • Lionello, R., Velli, M., Downs, C., Linker, J.A., Mikić, Z., Verdini, A.: 2014, Validating a time-dependent turbulence-driven model of the solar wind. Astrophys. J. 784(2), 120. DOI . ADS .

    Article  ADS  Google Scholar 

  • Matsumoto, T., Suzuki, T.K.: 2012, Connecting the Sun and the solar wind: The first 2.5-dimensional self-consistent MHD simulation under the Alfvén wave scenario. Astrophys. J. 749, 8. DOI . ADS .

    Article  ADS  Google Scholar 

  • Matthaeus, W.H., Minnie, J., Breech, B., Parhi, S., Bieber, J., Oughton, S.: 2004, Transport of cross helicity and radial evolution of Alfvénicity in the solar wind. Geophys. Res. Lett. 31(1), L12803. DOI .

    Article  ADS  Google Scholar 

  • Montagud-Camps, V., Grappin, R., Verdini, A.: 2018, Turbulent heating between 0.2 and 1 AU: A numerical study. Astrophys. J. 853(2), 153. DOI . ADS .

    Article  ADS  Google Scholar 

  • Nigro, G., Malara, F., Carbone, V., Veltri, P.: 2004, Nanoflares and MHD turbulence in coronal loops: A hybrid shell model. Phys. Rev. Lett. 92(19), 194501. DOI . ADS .

    Article  ADS  Google Scholar 

  • Perez, J.C., Chandran, B.D.G.: 2013, Direct numerical simulations of reflection-driven, reduced magnetohydrodynamic turbulence from the Sun to the Alfvén critical point. Astrophys. J. 776(2), 124. DOI .

    Article  ADS  Google Scholar 

  • Politano, H., Pouquet, A.G.: 1998, Von Kármán–Howarth equation for magnetohydrodynamics and its consequences on third-order longitudinal structure and correlation functions. Phys. Rev. E, Stat. Phys. 57(1), 21. DOI .

    Article  ADS  Google Scholar 

  • Shoda, M., Yokoyama, T.: 2016, Nonlinear reflection process of linearly polarized, broadband Alfvén waves in the fast solar wind. Astrophys. J. 820, 123. DOI . ADS .

    Article  ADS  Google Scholar 

  • Shoda, M., Yokoyama, T., Suzuki, T.K.: 2018a, A self-consistent model of the coronal heating and solar wind acceleration including compressible and incompressible heating processes. Astrophys. J. 853(2), 190. DOI .

    Article  ADS  Google Scholar 

  • Shoda, M., Yokoyama, T., Suzuki, T.K.: 2018b, Frequency-dependent Alfvén-wave propagation in the solar wind: Onset and suppression of parametric decay instability. Astrophys. J. 860, 17. DOI . ADS .

    Article  ADS  Google Scholar 

  • Suzuki, T.K., Inutsuka, S.-i.: 2005, Making the corona and the fast solar wind: A self-consistent simulation for the low-frequency Alfvén waves from the photosphere to 0.3 AU. Astrophys. J. 632(1), L49. DOI .

    Article  ADS  Google Scholar 

  • Suzuki, T.K., Inutsuka, S.-I.: 2006, Solar winds driven by nonlinear low-frequency Alfvén waves from the photosphere: Parametric study for fast/slow winds and disappearance of solar winds. J. Geophys. Res. Space Phys. 111, A06101. DOI . ADS .

    Article  ADS  Google Scholar 

  • Tenerani, A., Velli, M.: 2017, Evolving waves and turbulence in the outer corona and inner heliosphere: The accelerating expanding box. Astrophys. J. 843, 26. DOI . ADS .

    Article  ADS  Google Scholar 

  • Usmanov, A.V., Goldstein, M.L., Matthaeus, W.H.: 2014, Three-fluid, three-dimensional magnetohydrodynamic solar wind model with eddy viscosity and turbulent resistivity. Astrophys. J. 788, 43. DOI . ADS .

    Article  ADS  Google Scholar 

  • van Ballegooijen, A.A., Asgari-Targhi, M.: 2016, Heating and acceleration of the fast solar wind by Alfvén wave turbulence. Astrophys. J. 821, 106. DOI . ADS .

    Article  ADS  Google Scholar 

  • van Ballegooijen, A.A., Asgari-Targhi, M.: 2017, Direct and inverse cascades in the acceleration region of the fast solar wind. Astrophys. J. 835, 10. DOI . ADS .

    Article  ADS  Google Scholar 

  • van der Holst, B., Sokolov, I.V., Meng, X., Jin, M., Manchester, W.B. IV, Tóth, G., Gombosi, T.I.: 2014, Alfvén Wave Solar Model (AWSoM): Coronal heating. Astrophys. J. 782, 81. DOI . ADS .

    Article  ADS  Google Scholar 

  • Vasquez, B.J., Smith, C.W., Hamilton, K., MacBride, B.T., Leamon, R.J.: 2007, Evaluation of the turbulent energy cascade rates from the upper inertial range in the solar wind at 1 AU. J. Geophys. Res. 112(A7), A07101. DOI .

    Article  ADS  Google Scholar 

  • Verdini, A., Grappin, R.: 2012, Transition from weak to strong cascade in MHD turbulence. Phys. Rev. Lett. 109(2), 025004. DOI . ADS .

    Article  ADS  Google Scholar 

  • Verdini, A., Grappin, R., Velli, M.: 2012, Coronal heating in coupled photosphere-chromosphere-coronal systems: Turbulence and leakage. Astron. Astrophys. 538, A70. DOI . ADS .

    Article  ADS  Google Scholar 

  • Verdini, A., Velli, M.: 2007, Alfvén waves and turbulence in the solar atmosphere and solar wind. Astrophys. J. 662, 669. DOI . ADS .

    Article  ADS  Google Scholar 

  • Verdini, A., Velli, M., Buchlin, É.: 2009, Turbulence in the sub-Alfvénic solar wind driven by reflection of low-frequency Alfvén waves. Astrophys. J. Lett. 700(1), L39. DOI . ADS .

    Article  ADS  Google Scholar 

  • Verdini, A., Velli, M., Matthaeus, W.H., Oughton, S., Dmitruk, P.: 2010, A turbulence-driven model for heating and acceleration of the fast wind in coronal holes. Astrophys. J. Lett. 708, L116. DOI . ADS .

    Article  ADS  Google Scholar 

  • Verdini, A., Grappin, R., Pinto, R.F., Velli, M.: 2012, On the origin of the \(1/f\) spectrum in the solar wind magnetic field. Astrophys. J. Lett. 750(2), L33. DOI . ADS .

    Article  ADS  Google Scholar 

  • Verdini, A., Grappin, R., Hellinger, P., Landi, S., Müller, W.-C.: 2015, Anisotropy of third-order structure functions in MHD turbulence. Astrophys. J. 804(2), 119. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wang, Y.-M.: 1994, Polar plumes and the solar wind. Astrophys. J. 435, L153. DOI .

    Article  ADS  Google Scholar 

  • Wang, Y.-M., Grappin, R., Robbrecht, E., Sheeley, N.R. Jr.: 2012, On the nature of the solar wind from coronal pseudostreamers. Astrophys. J. 749, 182. DOI . ADS .

    Article  ADS  Google Scholar 

  • Woolsey, L.N., Cranmer, S.R.: 2015, Time-dependent turbulent heating of open flux tubes in the chromosphere, corona, and solar wind. Astrophys. J. 811, 136. DOI . ADS .

    Article  ADS  Google Scholar 

  • Yamada, M., Ohkitani, K.: 1987, Lyapunov spectrum of a chaotic model of three-dimensional turbulence. J. Phys. Soc. Japan 56, 4210. DOI . ADS .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has been supported by Programme National Soleil-Terre (PNST/INSU/CNRS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Verdini.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Solar Wind at the Dawn of the Parker Solar Probe and Solar Orbiter Era

Guest Editors: Giovanni Lapenta and Andrei Zhukov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verdini, A., Grappin, R. & Montagud-Camps, V. Turbulent Heating in the Accelerating Region Using a Multishell Model. Sol Phys 294, 65 (2019). https://doi.org/10.1007/s11207-019-1458-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-019-1458-y

Keywords

Navigation