Advertisement

Solar Physics

, 293:82 | Cite as

Evaluating Uncertainties in Coronal Electron Temperature and Radial Speed Measurements Using a Simulation of the Bastille Day Eruption

  • Nelson Reginald
  • Orville St. Cyr
  • Joseph Davila
  • Lutz Rastaetter
  • Tibor Török
Article

Abstract

Obtaining reliable measurements of plasma parameters in the Sun’s corona remains an important challenge for solar physics. We previously presented a method for producing maps of electron temperature and speed of the solar corona using K-corona brightness measurements made through four color filters in visible light, which were tested for their accuracies using models of a structured, yet steady corona. In this article we test the same technique using a coronal model of the Bastille Day (14 July 2000) coronal mass ejection, which also contains quiet areas and streamers. We use the coronal electron density, temperature, and flow speed contained in the model to determine two K-coronal brightness ratios at (410.3, 390.0 nm) and (423.3, 398.7 nm) along more than 4000 lines of sight. Now assuming that for real observations, the only information we have for each line of sight are these two K-coronal brightness ratios, we use a spherically symmetric model of the corona that contains no structures to interpret these two ratios for electron temperature and speed. We then compare the interpreted (or measured) values for each line of sight with the true values from the model at the plane of the sky for that same line of sight to determine the magnitude of the errors. We show that the measured values closely match the true values in quiet areas. However, in locations of coronal structures, the measured values are predictably underestimated or overestimated compared to the true values, but can nevertheless be used to determine the positions of the structures with respect to the plane of the sky, in front or behind. Based on our results, we propose that future white-light coronagraphs be equipped to image the corona using four color filters in order to routinely create coronal maps of electron density, temperature, and flow speed.

Keywords

Solar corona K-corona Electron temperature images Electron speed images Space weather 

Notes

Acknowledgements

N.L.R. was supported by NASA grant PL10A-125. T.T. was supported by NSF’s FESD (Sun-2-Ice) and NASA’s LWS programs. Computational resources for the MHD simulation used in this article were provided by the NSF-supported Texas Advanced Computing Center (TACC) in Austin and the NASA Advanced Supercomputing Division (NAS) at Ames Research Center.

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest. Two of the authors, JD and NR, co-inventors of the US Patent cited in this article, declare that they have no conflicts of interest.

References

  1. Baumbach, S.: 1937, Astron. Nachr. 263, 121. DOI. ADSCrossRefGoogle Scholar
  2. Cram, L.E.: 1976, Solar Phys. 48, 3. ADS. DOI. ADSCrossRefGoogle Scholar
  3. Davila, J.M., Rabin, D.M., Reginald, N.L., Gong, Q., Shah, N., Chamberlin, P.C.: 2018, Spherical Occulter Coronagraph Cubesat. US Patent 9,921,099 B1, 20, 2018. Google Scholar
  4. Fisher, R.R., Lee, R.H., MacQueen, R.M., Poland, A.I.: 1981, Appl. Opt. 20, 1094. ADS. DOI. ADSCrossRefGoogle Scholar
  5. Ichimoto, K., Kumagai, K., Sano, I., Kobiki, T., Sakurai, T., Munoz, A.: 1996, Publ. Astron. Soc. Japan 48, 545. DOI. ADSCrossRefGoogle Scholar
  6. Irada, I.S., Nasanova, L.P., Lisin, D.V., Popov, V.V., Krusanova, N.L.: 2017, J. Geophys. Res. 122(1), 78. ADS. DOI. Google Scholar
  7. Koutchmy, S.: 1985, G. Nikolsky memorial lecture. In: Properties and Interactions of Interplanetary Dust, 63. ADS. CrossRefGoogle Scholar
  8. Kurucz, R.L., Furenlid, I., Brault, J., Testerman, L.: 1984, Solar Flux Atlas from 296 nm to 1300 nm, National Solar Observatory, Arizona. ADS. Google Scholar
  9. Leblanc, Y., Dulk, G.A., Bougeret, J.: 1998, Solar Phys. 183, 165. ADS. DOI. ADSCrossRefGoogle Scholar
  10. Linker, J., Török, T., Downs, C., Lionello, R., Titov, V., Caplan, R.M., Mikić, Z., Riley, P.: 2016, AIP Conf. Proc. 1720, 020002. DOI. CrossRefGoogle Scholar
  11. Lionello, R., Linker, J.A., Mikić, Z.: 2009, Astrophys. J. 690, 90. ADS. DOI. ADSCrossRefGoogle Scholar
  12. Lionello, R., Mikić, Z., Linker, J.A.: 1999, J. Comput. Phys. 152, 346. ADS. DOI. ADSMathSciNetCrossRefGoogle Scholar
  13. Mann, I.: 1992, Astron. Astrophys. 261, 329. ADS. ADSGoogle Scholar
  14. Manoharan, P.K., Tokumaru, M., Pick, M., Subramanian, P., Ipavich, F.M., Schenk, K., Kaiser, M.L., Lepping, R.P., Vourlidas, A.: 2001, Astrophys. J. 559, 1180. ADS. DOI. ADSCrossRefGoogle Scholar
  15. Mikić, Z., Linker, J.A.: 1994, Astrophys. J. 430, 898. ADS. DOI. ADSCrossRefGoogle Scholar
  16. Mikić, Z., Linker, J.A., Schnack, D.D., Lionello, R., Tarditi, A.: 1999, Phys. Plasmas 6, 2217. ADS. DOI. ADSCrossRefGoogle Scholar
  17. November, L.J., Koutchmy, S.: 1996, Astrophys. J. 446, 512. ADS. DOI. ADSCrossRefGoogle Scholar
  18. Reginald, N.L.: 2001, Ph.D. thesis. University of Delaware, Newark, USA, Publication Number: 9998766. ADS.
  19. Reginald, N.L., Davila, J.M.: 2000, Solar Phys. 195, 111. ADS. DOI. ADSCrossRefGoogle Scholar
  20. Reginald, N.L., Davila, J.M., St. Cyr, O.C.: 2004, Solar Phys. 225, 249. ADS. DOI. ADSCrossRefGoogle Scholar
  21. Reginald, N.L., St. Cyr, O.C., Davila, J.M., Brosius, J.W.: 2003, Astrophys. J. 599, 596. ADS. DOI. ADSCrossRefGoogle Scholar
  22. Reginald, N.L., St. Cyr, O.C., Davila, J.M., Rabin, D.M., Guhathakurta, M., Hassler, D.M.: 2009, Solar Phys. 260, 347. ADS. DOI. ADSCrossRefGoogle Scholar
  23. Reginald, N.L., Davila, J.M., St. Cyr, O.C., Rabin, D.M., Guhathakurta, M., Hassler, D.M., Gashut, H.: 2011, Solar Phys. 270, 235. ADS. DOI. ADSCrossRefGoogle Scholar
  24. Reginald, N.L., Davila, J.M., St. Cyr, O.C., Rastatter, L.: 2014, Solar Phys. 289, 2021. ADS. DOI. ADSCrossRefGoogle Scholar
  25. Reginald, N.L., Davila, J.M., St. Cyr, O.C., Rabin, D.M.: 2017, J. Geophys. Res. 122, 5856. DOI. CrossRefGoogle Scholar
  26. Reginald, N.L., Gopalswamy, N., Yashiro, S., Gong, Q., Guhathakurta, M.: 2017, J. Astron. Telesc. Instrum. Syst. 3(1), 014001. ADS. DOI. ADSCrossRefGoogle Scholar
  27. Riley, P., Lionello, R.: 2011, Solar Phys. 270, 575. ADS. DOI. ADSCrossRefGoogle Scholar
  28. Riley, P., Linker, J.A., Lionello, R., Mikić, Z.: 2012, J. Atmos. Solar-Terr. Phys. 83, 1. ADS. DOI. ADSCrossRefGoogle Scholar
  29. Rottman, G.: 2005, Solar Phys. 230, 7. ADS. DOI. ADSCrossRefGoogle Scholar
  30. Saito, K., Makita, M., Nishi, K., Hata, S.: 1970, Ann. Tokyo Astron. Obs., Second Ser. 12, 53. ADS. ADSGoogle Scholar
  31. Takahashi, N., Yoneshima, W., Hiei, E., Ichimoto, K.: 2000, The Last Total Solar Eclipse of the Millennium in Turkey, ASP Conf. Series 205. ADS. Google Scholar
  32. Thompson, W.T., Davila, J.M., Fisher, R.R., Orwig, L.E., Mentzell, J.E., Hetherington, S.E., Derro, R.J., Federline, R.E., Clark, D.C., Chen, P.T.C., Tveekrem, J.L., Martino, A.J., Novello, J., Wesenberg, R.P., St. Cyr, O.C., Reginald, N.L., Howard, R.A., Mehalick, K.I., Hersh, M.J., Newman, M.D., Thomas, D.L., Card, G.L., Elmore, D.F.: 2003, Proc. SPIE 4853, 1. ADS. DOI. ADSCrossRefGoogle Scholar
  33. Titov, V.S., Török, T., Mikić, Z., Linker, J.A.: 2014, Astrophys. J. arXiv. ADS. DOI. Google Scholar
  34. Török, T., Downs, C., Linker, J.A., Lionello, R., Titov, V.S., Mikić, Z., Riley, P., Caplan, R.M., Wijaya, J.: 2018, Astrophys. J. 856, 75. ADS. DOI. ADSCrossRefGoogle Scholar
  35. Wang, T., Davila, J.M.: 2014, Solar Phys. 289, 3723. ADS. DOI. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.MC 671The Catholic University of America at NASA’s Goddard Space Flight CenterGreenbeltUSA
  2. 2.MC 670NASA’s Goddard Space Flight CenterGreenbeltUSA
  3. 3.MC 674NASA’s Goddard Space Flight CenterGreenbeltUSA
  4. 4.Predictive Science Inc.San DiegoUSA

Personalised recommendations