Skip to main content
Log in

On the Synchronizability of Tayler–Spruit and Babcock–Leighton Type Dynamos

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

The solar cycle appears to be remarkably synchronized with the gravitational torques exerted by the tidally dominant planets Venus, Earth and Jupiter. Recently, a possible synchronization mechanism was proposed that relies on the intrinsic helicity oscillation of the current-driven Tayler instability which can be stoked by tidal-like perturbations with a period of 11.07 years. Inserted into a simple \(\alpha \)\(\Omega \) dynamo model these resonantly excited helicity oscillations led to a 22.14 years dynamo cycle. Here, we assess various alternative mechanisms of synchronization. Specifically we study a simple time-delay model of Babcock–Leighton type dynamos and ask whether periodic changes of either the minimal amplitude for rising toroidal flux tubes or the \(\Omega \) effect could eventually lead to synchronization. In contrast to the easy and robust synchronizability of Tayler–Spruit dynamo models, our answer for those Babcock–Leighton type models is less propitious.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

Notes

  1. The “generous omission” of Mercury, whose tidal effect is nearly the same as that of Earth, but whose 88 days revolution period is often considered as “so short that its influence appears only as an average, non-fluctuating factor…” (Öpik, 1972), might be another argument for skeptics. However, it could also be worthwhile to re-analyze the 50 – 80 years sub-band of the Gleissberg cycle as identified by Ogurtsov et al. (2002) in the light of the 66.4 years period of the four-fold co-alignment of Mercury, Venus, Earth and Jupiter (Verma, 1986).

References

  • Abreu, J.A., Beer, J., Ferriz-Mas, A., McCracken, K.G., Steinhilber, F.: 2012, Is there a planetary influence on solar activity? Astron. Astrophys. 548, A88. DOI .

    Article  ADS  Google Scholar 

  • Abreu, J.A., Albert, C., Beer, J., Ferriz-Mas, A., McCracken, K.G., Steinhilber, F.: 2014, Response to: “Critical analysis of a hypothesis of the planetary tidal influence on solar activity” by S. Poluianov and I. Usoskin. Solar Phys. 289, 2343. DOI .

    Article  ADS  Google Scholar 

  • Babcock, H.W.: 1961, The topology of the Sun’s magnetic field and the 22-year cycle. Astrophys. J. 133, 572. DOI .

    Article  ADS  Google Scholar 

  • Beer, J., Tobias, S., Weiss, N.: 1998, An active sun throughout the Maunder Minimum. Solar Phys. 181, 237. DOI .

    Article  ADS  Google Scholar 

  • Bollinger, C.J.: 1952, A 44.77 year Jupiter–Venus–Earth configuration sun-tide period in solar-climatic cycles. Proc. Okla. Acad. Sci. 33, 307.

    Google Scholar 

  • Bonanno, A., Guarnieri, F.: 2017, On the possibility of helicity oscillations in the saturation of the Tayler instability. Astron. Nachr. 338, 516. DOI .

    Article  ADS  Google Scholar 

  • Bonanno, A., Brandenburg, A., Del Sordo, F., Mitra, D.: 2012, Breakdown of chiral symmetry during saturation of the Tayler instability. Phys. Rev. E 86, 016313. DOI .

    Article  ADS  Google Scholar 

  • Brown, T.M, Christensen-Dalsgaard, J., Dziembowski, W.A., Goode, P., Gough, D.O., Morrow, C.: 1989, Inferring the sun’s internal angular velocity from observed p-mode frequency splitting. Astrophys. J. 343, 526. DOI .

    Article  ADS  Google Scholar 

  • Callebaut, D.K., de Jager, C., Duhau, S.: 2012, The influence of planetary attractions on the solar tachocline. J. Atmos. Solar-Terr. Phys. 80, 73. DOI .

    Article  ADS  Google Scholar 

  • Cameron, R.H., Schüssler, M.: 2013, No evidence for planetary influence on solar activity. Astron. Astrophys. 557, A83. DOI .

    Article  Google Scholar 

  • Cameron, R.H., Schüssler, M.: 2017, Understanding solar cycle variability. Astrophys. J. 843, 111. DOI .

    Article  ADS  Google Scholar 

  • Charbonneau, P.: 2010, Dynamo models of the solar cycle. Living Rev. Solar Phys. 7, 3. DOI .

    Article  ADS  Google Scholar 

  • Charvatova, I.: 1997, Solar-terrestrial and climatic phenomena in relation to solar inertial motion. Surv. Geophys. 18, 131. DOI .

    Article  ADS  Google Scholar 

  • Chatterjee, P., Mitra, D., Brandenburg, A., Rheinhardt, M.: 2011, Spontaneous chiral symmetry breaking by hydromagnetic buoyancy. Phys. Rev. E 84, 025403. DOI .

    Article  ADS  Google Scholar 

  • Choudhuri, A.R., Schüssler, M., Dikpati, M.: 1995, The solar dynamo with meridional circulation. Astron. Astrophys. 303, L29.

    ADS  Google Scholar 

  • Cionco, R.G., Soon, W.: 2015, A phenomenological study of the timing of solar activity minima of the last millennium through a physical modeling of the sun-planets interaction. New Astron. 34, 164. DOI .

    Article  ADS  Google Scholar 

  • Condon, J.J., Schmidt, R.R.: 1975, Planetary tides and the sunspot cycles. Solar Phys. 42, 529. DOI .

    Article  ADS  Google Scholar 

  • Dicke, R.H.: 1978, Is there a chronometer hidden deep in the Sun? Nature 276, 676.

    Article  ADS  Google Scholar 

  • Ferriz Mas, A., Schmitt, D., Schüssler, M.: 1994, A dynamo effect due to instability of magnetic flux tubes. Astron. Astrophys. 289, 949.

    ADS  Google Scholar 

  • Gellert, M., Rüdiger, G., Hollerbach, R.: 2011, Helicity and alpha-effect by current-driven instabilities of helical magnetic fields. Mon. Not. Roy. Astron. Soc. 414, 2696. DOI .

    Article  ADS  Google Scholar 

  • Giesecke, A., Stefani, F., Burguete, J.: 2012, Impact of time-dependent nonaxisymmetric velocity perturbations on dynamo action of von Kármán-like flows. Phys. Rev. E 86, 066303. DOI .

    Article  ADS  Google Scholar 

  • Giesecke, A., Stefani, F., Herault, J.: 2017, Parametric instability in periodically perturbed dynamos. Phys. Rev. Fluids 2, 053701. DOI .

    Article  ADS  Google Scholar 

  • Grandpierre, A.: 1996, On the origin of solar cycle periodicity. Astrophys. Space Sci. 243, 393. DOI .

    Article  ADS  Google Scholar 

  • Gray, L.J., Beer, J., Geller, M., Haigh, J.D., Lockwood, M., Matthes, K., Cubasch, U., Fleitmann, D., Harrison, G., Hood, L., Luterbacher, J., Meehl, G.A., Shindell, D., van Geel, B., White, W.: 2010, Solar influences on climate. Rev. Geophys. 48, RG4001. DOI .

    Article  ADS  Google Scholar 

  • Hazra, S., Passos, D., Nandy, D.: 2014, A stochastically forced time delay solar dynamo model: Self-consistent recovery from a Maunder-like grand minimum necessitates a mean-field alpha-effect. Astrophys. J. 789, 5. DOI .

    Article  ADS  Google Scholar 

  • Howe, R.: 2009, Solar interior rotation and its variation. Living Rev. Solar Phys. 6, 1. DOI

    Article  ADS  Google Scholar 

  • Hoyt, D.V., Schatten, K.H.: 1997, The Role of the Sun in Climate Change, Oxford University Press, New York.

    Google Scholar 

  • Hung, C.-C.: 2007, Apparent relations between solar activity and solar tides caused by the planets. NASA/TM-2007-214817, 1.

  • Jose, P.D.: 1965, Sun’s motion and sunspots. Astron. J. 70, 193. DOI .

    Article  ADS  Google Scholar 

  • Kitchatinov, L.L., Rüdiger, G., Küker, M.: 1994, Lambda-quenching as the nonlinearity in stellar-turbulence dynamos. Astron. Astrophys. 292, 125.

    ADS  Google Scholar 

  • Leighton, R.B.: 1964, Transport of magnetic field on the sun. Astrophys. J. 140, 1547. DOI .

    Article  MATH  ADS  Google Scholar 

  • Li, K.J., Feng, W., Liang, H.F., Zhan, L.S., Gao, P.X.: 2011, A brief review on the presentation of cycle 24, the first integrated solar cycle in the new millennium. Ann. Geophys. 29, 341. DOI .

    Article  ADS  Google Scholar 

  • Luthardt, L., Rößler, R.: 2017, Fossil forest reveals sunspot activity in the early Permian. Geology 45, 279. DOI .

    Article  ADS  Google Scholar 

  • Malkus, W.V.R., Proctor, M.R.E.: 2017, Macrodynamics of alpha-effect dynamos in rotating fluids. J. Fluid Mech. 67, 417.

    MATH  ADS  Google Scholar 

  • McCracken, K.G., Beer, J., Steinhilber, F: 2014, Evidence for planetary forcing of the cosmic ray intensity and solar activity throughout the past 9400 years. Solar Phys. 289, 3207. DOI .

    Article  ADS  Google Scholar 

  • Moss, D.L., Sokoloff, D.: 2017, Parity fluctuations in stellar dynamos. Astron. Rep. 61, 878. DOI .

    Article  ADS  Google Scholar 

  • Newton, A.P.L., Kim, E.: 2013, Determining the temporal dynamics of the solar \(\alpha\) effect. Astron. Astrophys. 551, A66. DOI .

    Article  ADS  Google Scholar 

  • Ogurtsov, M.G., Nagovitsyn, Yu.A., Kocharev, G.E., Jungner, H.: 2002, Long-period cycles of the sun’s activity recorded in direct solar data and proxies. Solar Phys. 211, 371. DOI .

    Article  ADS  Google Scholar 

  • Okhlopkov, V.P.: 2014, The 11-year cycle of solar activity and configurations of the planets. Moscow Univ. Phys. Bull. 69, 257. DOI .

    Article  ADS  Google Scholar 

  • Okhlopkov, V.P.: 2016, The gravitational influence of Venus, the Earth, and Jupiter on the 11-year cycle of solar activity. Moscow Univ. Phys. Bull. 71, 440. DOI .

    Article  ADS  Google Scholar 

  • Öpik, E.: 1972, Solar-planetary tides and sunspots. I. Astron. J. 10, 298.

    Google Scholar 

  • Parker, E.N.: 1955, Hydromagnetic dynamo models. Astrophys. J. 122, 293. DOI .

    Article  MathSciNet  ADS  Google Scholar 

  • Pikovsky, A., Rosenblum, M., Kurths, J.: 2001, Synchronizations: A Universal Concept in Nonlinear Sciences, Cambridge University Press, Cambridge.

    Book  MATH  Google Scholar 

  • Pipin, V.V., Zhang, H., Sokoloff, D.D., Kuzanyan, K.M., Gao, Y: 2013, The origin of the helicity hemispheric sign rule reversals in the mean-field solar-type dynamo. Mon. Not. Roy. Astron. Soc. 435, 2581. DOI .

    Article  ADS  Google Scholar 

  • Pitts, E., Tayler, R.J.: 1985, The adiabatic stability of stars containing magnetic-fields. 6. The influence of rotation. Mon. Not. Roy. Astron. Soc. 216, 139. DOI .

    Article  ADS  Google Scholar 

  • Poluianov, S., Usoskin, I.: 2014, Critical analysis of a hypothesis of the planetary tidal influence on solar activity. Solar Phys. 289, 2333. DOI .

    Article  ADS  Google Scholar 

  • Richards, M.T., Rogers, M.L., Richards, D.St.P.: 2009, Long-term variability in the length of the solar cycle. Publ. Astron. Soc. Pac. 121, 797. DOI .

    Article  ADS  Google Scholar 

  • Rüdiger, G., Kitchatinov, L.L., Hollerbach, R.: 2013, Magnetic Processes in Astrophysics, Wiley-VCH, Berlin.

    Book  Google Scholar 

  • Rüdiger, G., Schultz, M., Gellert, M., Stefani, F.: 2015, Subcritical excitation of the current-driven Tayler instability by super-rotation. Phys. Fluids 28, 014105. DOI .

    Article  Google Scholar 

  • Ruzmaikin, A., Feynman, J.: 2015, The Earth’s climate at minima of centennial Gleissberg cycles. Adv. Space Res. 56, 1590. DOI .

    Article  ADS  Google Scholar 

  • Scafetta, N.: 2010, Empirical evidence for a celestial origin of the climate oscillations and its implications. J. Atmos. Solar-Terr. Phys. 72, 951. DOI .

    Article  ADS  Google Scholar 

  • Scafetta, N.: 2013, Discussion on climate oscillations: CMIP5 general circulation models versus a semi-empirical harmonic model based on astronomical cycles. Earth-Sci. Rev. 126, 321. DOI .

    Article  ADS  Google Scholar 

  • Scafetta, N.: 2014, The complex planetary synchronization structure of the solar system. Pattern Recogn. Phys. 2, 1. DOI .

    Article  ADS  Google Scholar 

  • Scafetta, N., Milani, F., Bianchini, A., Ortolani, S.: 2016, On the astronomical origin of the Hallstatt oscillation found in radiocarbon and climate records throughout the Holocene. Earth-Sci. Rev. 162, 24. DOI .

    Article  Google Scholar 

  • Schmitt, D., Schüssler, M., Ferriz Mas, A.: 1996, Intermittent solar activity by an on–off dynamo. Astron. Astrophys. 311, L1.

    ADS  Google Scholar 

  • Seilmayer, M., Stefani, F., Gundrum, T., Weier, T., Gerbeth, G., Gellert, M., Rüdiger, G.: 2012, Experimental evidence for Tayler instability in a liquid metal column. Phys. Rev. Lett. 108, 244501. DOI .

    Article  ADS  Google Scholar 

  • Sokoloff, D., Nesme-Ribes, E.: 1994, The Maunder minimum: a mixed-parity dynamo mode? Astron. Astrophys. 288, 293.

    ADS  Google Scholar 

  • Solanki, S.K., Krilova, N.A., Haigh, J.D.: 2013, Solar irradiance variability and climate. Annu. Rev. Astron. Astrophys. 51, 311. DOI .

    Article  ADS  Google Scholar 

  • Soon, W., Herrera, V.M., Selvaraj, K., Traversi, R., Usoskin, I., Chen, C.A., Lou, J.Y. Kao, S.L., Carter, R.M., Pipin, V., Seven, M., Becagli, S.: 2014, A review of Holocene solar-linked climatic variation on centennial to millennial timescales: Physical processes, interpretative frameworks and a new multiple cross-wavelet transform algorithm. Earth-Sci. Rev. 134, 1. DOI .

    Article  Google Scholar 

  • Spruit, H.: 2002, Dynamo action by differential rotation in a stably stratified stellar interior. Astron. Astrophys. 381, 923. DOI .

    Article  ADS  Google Scholar 

  • Stefani, F., Kirillov, O.N.: 2015, Destabilization of rotating flows with positive shear by azimuthal magnetic fields. Phys. Rev. E 92, 051001(R). DOI .

    Article  ADS  Google Scholar 

  • Stefani, F., Giesecke, A., Weber, N., Weier, T.: 2016, Synchronized helicity oscillations: a link between planetary tides and the solar cycle? Solar Phys. 291, 2197. DOI .

    Article  ADS  Google Scholar 

  • Stefani, F., Galindo, V. Giesecke, A., Weber, N., Weier, T.: 2017, The Tayler instability at low magnetic Prandtl numbers: Chiral symmetry breaking and synchronizable helicity oscillations. Magnetohydrodynamics 53, 169.

    Google Scholar 

  • Takahashi, K.: 1968, On the relation between the solar activity cycle and the solar tidal force induced by the planets. Solar Phys. 3, 598. DOI .

    Article  ADS  Google Scholar 

  • Tayler, R.J.: 1973, The adiabatic stability of stars containing magnetic fields – I: Toroidal fields. Mon. Not. Roy. Astron. Soc. 161, 365. DOI .

    Article  ADS  Google Scholar 

  • Verma, S.D., 1986 Influence of planetary motion and radial alignment of planets on sun. In: Bhatnagar, K.B. Space Dynamics and Celestial Mechanics, Astrophys. Space Sci. Libr., 127, Springer, Berlin 143.

    Chapter  Google Scholar 

  • Weber, N., Galindo, V., Stefani, F., Weier, T., Wondrak, T.: 2013, Numerical simulation of the Tayler instability in liquid metals. New J. Phys. 15, 043034. DOI .

    Article  ADS  Google Scholar 

  • Weber, N., Galindo, V., Stefani, F., Weier, T.: 2015, The Tayler instability at low magnetic Prandtl numbers: Between chiral symmetry breaking and helicity oscillations. New J. Phys. 17, 113013. DOI .

    Article  ADS  Google Scholar 

  • Weiss, N.O., Tobias, S.M: 2016, Supermodulation of the Sun’s magnetic activity: The effect of symmetry changes. Mon. Not. Roy. Astron. Soc. 456, 2654. DOI .

    Article  ADS  Google Scholar 

  • Wilmot-Smith, A.L., Nandy, D., Hornig, G., Martens, P.C.H.: 2006, A time delay model for solar and stellar dynamos. Astrophys. J. 652, 696. DOI .

    Article  ADS  Google Scholar 

  • Wilson, I.R.G.: 2013, The Venus–Earth–Jupiter spin–orbit coupling model. Pattern Recogn. Phys. 1, 147. DOI .

    Article  ADS  Google Scholar 

  • Wolf, R.: 1859, Extract of a letter to Mr. Carrington. Mon. Not. Roy. Astron. Soc. 19, 85. DOI

    Article  ADS  Google Scholar 

  • Wolff, C.L., Patrone, P.N.: 2010, A new way that planets can affect the sun. Solar Phys. 266, 227. DOI .

    Article  ADS  Google Scholar 

  • Wood, K.: 1972, Sunspots and planets. Nature 240(5376), 91. DOI .

    Article  ADS  Google Scholar 

  • Wood, T.: 2010, The solar tachocline: A self-consistent model of magnetic confinement. Dissertation, University of Cambridge, Cambridge.

  • Yoshimura, H.: 1975, Solar-cycle dynamo wave propagation. Astrophys. J. 201, 740. DOI .

    Article  MathSciNet  ADS  Google Scholar 

  • Zahn, J.-P., Brun, A.S., Mathis, S.: 2007, On magnetic instabilities and dynamo action in stellar radiation zones. Astron. Astrophys. 474, 145. DOI .

    Article  MATH  ADS  Google Scholar 

  • Zaqarashvili, T.V.: 1997, On a possible generation mechanism for the solar cycle. Astrophys. J. 487, 930. DOI .

    Article  ADS  Google Scholar 

  • Zhang, K., Chan, K.H., Zou, J., Liao, X., Schubert, G.: 2003, A three-dimensional spherical nonlinear interface dynamo. Astrophys. J. 596, 663. DOI .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF) in frame of the Helmholtz alliance LIMTECH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Stefani.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stefani, F., Giesecke, A., Weber, N. et al. On the Synchronizability of Tayler–Spruit and Babcock–Leighton Type Dynamos. Sol Phys 293, 12 (2018). https://doi.org/10.1007/s11207-017-1232-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-017-1232-y

Keywords

Navigation