Skip to main content
Log in

Rearrangements of Open Magnetic Flux and Formation of Polar Coronal Holes in Cycle 24

  • Published:
Solar Physics Aims and scope Submit manuscript

A Correction to this article was published on 06 December 2017

This article has been updated

Abstract

A method of synoptic map assimilation has been developed to study global rearrangements of open magnetic flux and formation of polar coronal holes (PCHs) in the current cycle. The analysis reveals ensembles of coronal holes (ECHs) that appear within unipolar magnetic regions associated with decaying activity complexes (ACs). The cause-effect relations between them explain the asynchronous PCH formation observed at the northern and southern hemispheres of the Sun. Thus, the decay of large ACs that were observed in 2014 led to formation of an extensive ECH, which then became the southern PCH in mid-2015. The intricate structure of the magnetic fields in the northern polar zone has impeded the formation of the northern PCH, although the dominant polarity at the North Pole reversed two years earlier than at the South Pole. The northern PCH formed only by mid-2016 as the result of a gradual merger of high-latitudinal ECHs associated with several decaying ACs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Change history

  • 06 December 2017

    Correction to: Solar Phys DOI 10.1007/s11207-017-1200-6

References

  • Antiochos, S.K., DeVore, C.R., Karpen, J.T., Mikić, Z.: 2007, Structure and dynamics of the Sun’s open magnetic field. Astrophys. J. 671, 936. DOI . ADS .

    Article  ADS  Google Scholar 

  • Balasubramaniam, K.S., Pevtsov, A.: 2011, Ground-based synoptic instrumentation for solar observations. In: Solar Physics and Space Weather Instrumentation IV, Proc. SPIE 8148, 814809. DOI . ADS .

    Chapter  Google Scholar 

  • Baumann, I., Schmitt, D., Schüssler, M., Solanki, S.K.: 2004, Evolution of the large-scale magnetic field on the solar surface: A parameter study. Astron. Astrophys. 426, 1075. DOI . ADS .

    Article  ADS  Google Scholar 

  • Bonnet, N., Cutrona, J., Herbin, M.A.: 2002, A ‘no-threshold’ histogram-based image segmentation method. Pattern Recognit. 35, 2319. DOI .

    Article  MATH  Google Scholar 

  • Caplan, R.M., Downs, C., Linker, J.A.: 2016, Synchronic coronal hole mapping using multi-instrument EUV images: Data preparation and detection method. Astrophys. J. 823, 53. DOI . ADS .

    Article  ADS  Google Scholar 

  • Choudhuri, A.R., Schussler, M., Dikpati, M.: 1995, The solar dynamo with meridional circulation. Astron. Astrophys. 303, L29. ADS .

    ADS  Google Scholar 

  • Davis, J.C.: 1986, Statistics and Data Analysis in Geology.

    Google Scholar 

  • Delaboudinière, J.-P., Artzner, G.E., Brunaud, J., Gabriel, A.H., Hochedez, J.F., Millier, F., Song, X.Y., Au, B., Dere, K.P., Howard, R.A., Kreplin, R., Michels, D.J., Moses, J.D., Defise, J.M., Jamar, C., Rochus, P., Chauvineau, J.P., Marioge, J.P., Catura, R.C., Lemen, J.R., Shing, L., Stern, R.A., Gurman, J.B., Neupert, W.M., Maucherat, A., Clette, F., Cugnon, P., van Dessel, E.L.: 1995, EIT: Extreme-ultraviolet imaging telescope for the SOHO mission. Solar Phys. 162, 291. DOI . ADS .

    Article  ADS  Google Scholar 

  • DeVore, C.R., Sheeley, N.R. Jr., Boris, J.P., Young, T.R. Jr., Harvey, K.L.: 1985, Simulations of magnetic-flux transport in solar active regions. Solar Phys. 102, 41. DOI . ADS .

    Article  ADS  Google Scholar 

  • Golubeva, E.M., Mordvinov, A.V.: 2016, Decay of activity complexes, formation of unipolar magnetic regions, and coronal holes in their causal relation. Solar Phys. 291, 3605. DOI . ADS .

    Article  ADS  Google Scholar 

  • Harvey, K.L., Recely, F.: 2002, Polar coronal holes during cycles 22 and 23. Solar Phys. 211, 31. DOI . ADS .

    Article  ADS  Google Scholar 

  • Harvey, J.W., Hill, F., Hubbard, R.P., Kennedy, J.R., Leibacher, J.W., Pintar, J.A., Gilman, P.A., Noyes, R.W., Title, A.M., Toomre, J., Ulrich, R.K., Bhatnagar, A., Kennewell, J.A., Marquette, W., Patron, J., Saa, O., Yasukawa, E.: 1996, The global oscillation network group (GONG) project. Science 272, 1284. DOI . ADS .

    Article  ADS  Google Scholar 

  • Harvey, J.W., Branston, D., Henney, C.J., Keller, C.U., SOLIS and GONG Teams: 2007, Seething horizontal magnetic fields in the quiet solar photosphere. Astrophys. J. Lett. 659, L177. DOI . ADS .

    Article  ADS  Google Scholar 

  • Howard, R.F., Harvey, J.W., Forgach, S.: 1990, Solar surface velocity fields determined from small magnetic features. Solar Phys. 130, 295. DOI . ADS .

    Article  ADS  Google Scholar 

  • Jiang, J., Cameron, R.H., Schüssler, M.: 2014, Effects of the scatter in sunspot group tilt angles on the large-scale magnetic field at the solar surface. Astrophys. J. 791, 5. DOI . ADS .

    Article  ADS  Google Scholar 

  • Jiang, J., Hathaway, D.H., Cameron, R.H., Solanki, S.K., Gizon, L., Upton, L.: 2014, Magnetic flux transport at the solar surface. Space Sci. Rev. 186, 491. DOI . ADS .

    Article  ADS  Google Scholar 

  • Jones, H.P., Duvall, T.L. Jr., Harvey, J.W., Mahaffey, C.T., Schwitters, J.D., Simmons, J.E.: 1992, The NASA/NSO spectromagnetograph. Solar Phys. 139, 211. DOI . ADS .

    Article  ADS  Google Scholar 

  • Karak, B.B., Jiang, J., Miesch, M.S., Charbonneau, P., Choudhuri, A.R.: 2014, Flux transport dynamos: From kinematics to dynamics. Space Sci. Rev. 186, 561. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kitchatinov, L.L., Olemskoy, S.V.: 2011, Does the Babcock–Leighton mechanism operate on the Sun? Astron. Lett. 37, 656. DOI . ADS .

    Article  ADS  Google Scholar 

  • Leibacher, J.W.: 1999, The global oscillation network group (GONG) project. Adv. Space Res. 24, 173. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., Hurlburt, N.E., Katz, N.L., Kushner, G.D., Levay, M., Lindgren, R.W., Mathur, D.P., McFeaters, E.L., Mitchell, S., Rehse, R.A., Schrijver, C.J., Springer, L.A., Stern, R.A., Tarbell, T.D., Wuelser, J.-P., Wolfson, C.J., Yanari, C., Bookbinder, J.A., Cheimets, P.N., Caldwell, D., Deluca, E.E., Gates, R., Golub, L., Park, S., Podgorski, W.A., Bush, R.I., Scherrer, P.H., Gummin, M.A., Smith, P., Auker, G., Jerram, P., Pool, P., Soufli, R., Windt, D.L., Beardsley, S., Clapp, M., Lang, J., Waltham, N.: 2012, The atmospheric imaging assembly (AIA) on the solar dynamics observatory (SDO). Solar Phys. 275, 17. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lowder, C., Qiu, J., Leamon, R.: 2017, Coronal holes and open magnetic flux over cycles 23 and 24. Solar Phys. 292, 18. DOI . ADS .

    Article  ADS  Google Scholar 

  • Mackay, D.H., Lockwood, M.: 2002, The evolution of the Sun’s open magnetic flux, II: Full solar cycle simulations. Solar Phys. 209, 287. DOI . ADS .

    Article  ADS  Google Scholar 

  • Mordvinov, A.V., Grigoryev, V.M., Erofeev, D.V.: 2015, Evolution of sunspot activity and inversion of the Sun’s polar magnetic field in the current cycle. Adv. Space Res. 55, 2739. DOI . ADS .

    Article  ADS  Google Scholar 

  • Mordvinov, A.V., Yazev, S.A.: 2014, Reversals of the Sun’s polar magnetic fields in relation to activity complexes and coronal holes. Solar Phys. 289, 1971. DOI . ADS .

    Article  ADS  Google Scholar 

  • Mordvinov, A., Pevtsov, A., Bertello, L., Petri, G.: 2016, The reversal of the Sun’s magnetic field in cycle 24. J. Solar-Terr. Phys. 2(1), 3. DOI . ADS .

    ADS  Google Scholar 

  • Petrie, G.J.D.: 2015, Solar magnetism in the polar regions. Living Rev. Solar Phys. 12, 5. DOI . ADS .

    Article  ADS  Google Scholar 

  • Petrie, G.J.D., Haislmaier, K.J.: 2013, Low-latitude coronal holes, decaying active regions, and global coronal magnetic structure. Astrophys. J. 775, 100. DOI . ADS .

    Article  ADS  Google Scholar 

  • Reiss, M.A., Hofmeister, S.J., De Visscher, R., Temmer, M., Veronig, A.M., Delouille, V., Mampaey, B., Ahammer, H.: 2015, Improvements on coronal hole detection in SDO/AIA images using supervised classification. J. Space Weather Space Clim. 5(27), A23. DOI . ADS .

    Article  Google Scholar 

  • Schrijver, C.J., De Rosa, M.L.: 2003, Photospheric and heliospheric magnetic fields. Solar Phys. 212, 165. DOI . ADS .

    Article  ADS  Google Scholar 

  • Sheeley, N.R. Jr., DeVore, C.R., Boris, J.P.: 1985, Simulations of the mean solar magnetic field during sunspot cycle 21. Solar Phys. 98, 219. DOI . ADS .

    Article  ADS  Google Scholar 

  • Sheeley, N.R. Jr., Nash, A.G., Wang, Y.-M.: 1987, The origin of rigidly rotating magnetic field patterns on the sun. Astrophys. J. 319, 481. DOI . ADS .

    Article  ADS  Google Scholar 

  • Sheeley, N.R. Jr., Wang, Y.-M.: 2015, The recent rejuvenation of the Sun’s large-scale magnetic field: A clue for understanding past and future sunspot cycles. Astrophys. J. 809, 113. DOI . ADS .

    Article  ADS  Google Scholar 

  • Sun, X., Hoeksema, J.T., Liu, Y., Zhao, J.: 2015, On polar magnetic field reversal and surface flux transport during solar cycle 24. Astrophys. J. 798, 114. DOI . ADS .

    Article  ADS  Google Scholar 

  • Timothy, A.F., Krieger, A.S., Vaiana, G.S.: 1975, The structure and evolution of coronal holes. Solar Phys. 42, 135. DOI . ADS .

    Article  ADS  Google Scholar 

  • Tsuneta, S., Ichimoto, K., Katsukawa, Y., Lites, B.W., Matsuzaki, K., Nagata, S., Orozco Suárez, D., Shimizu, T., Shimojo, M., Shine, R.A., Suematsu, Y., Suzuki, T.K., Tarbell, T.D., Title, A.M.: 2008, The magnetic landscape of the Sun’s polar region. Astrophys. J. 688, 1374. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wang, Y.M.: 2009, Coronal holes and open magnetic flux. Space Sci. Rev. 144, 383. DOI .

    Article  ADS  Google Scholar 

  • Wang, Y.-M., Nash, A.G., Sheeley, N.R. Jr.: 1989, Magnetic flux transport on the sun. Science 245, 712. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wang, Y.-M., Sheeley, N.R. Jr.: 1990, Solar wind speed and coronal flux-tube expansion. Astrophys. J. 355, 726. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wang, Y.-M., Sheeley, N.R. Jr.: 2004, Footpoint switching and the evolution of coronal holes. Astrophys. J. 612, 1196. DOI . ADS .

    Article  ADS  Google Scholar 

  • Yeates, A.R., Baker, D., van Driel-Gesztelyi, L.: 2015, Source of a prominent poleward surge during solar cycle 24. Solar Phys. 290, 3189. DOI . ADS .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

NSO/Kitt Peak data used here are produced cooperatively by NSF/NOAO, NASA/GSFC, and NOAA/SEL. The NSO/KPVT coronal hole data used here were compiled by K. Harvey and F. Recently using observations under a grant from the NSF. This work uses SOLIS data obtained by the NSO Integrated Synoptic Program (NISP), managed by the NSO, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc. under a cooperative agreement with the National Science Foundation. This work uses data obtained by the Global Oscillation Network Group (GONG) program, managed by the NSO. The data were acquired by instruments operated by the Big Bear Solar Observatory, the High Altitude Observatory, the Learmonth Solar Observatory, the Udaipur Solar Observatory, the Instituto de Astrofísica de Canarias, and the Cerro Tololo Interamerican Observatory. The authors also employed synoptic maps of the solar EUV emission prepared by the SOHO/EIT science team and NASA/SDO and the AIA, EVE, and HMI science teams. The authors are grateful to Svetlana Philippova for assistance in preparation of the English version and to the referee for the useful comments.

This work was supported by the Russian Foundation for Basic Research (project 17-02-00016) and by the SB RAS Program II.16.3.1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Mordvinov.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

A correction to this article is available online at https://doi.org/10.1007/s11207-017-1219-8.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golubeva, E.M., Mordvinov, A.V. Rearrangements of Open Magnetic Flux and Formation of Polar Coronal Holes in Cycle 24. Sol Phys 292, 175 (2017). https://doi.org/10.1007/s11207-017-1200-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-017-1200-6

Keywords

Navigation