Skip to main content
Log in

Multi-label Learning for Detection of CME-Associated Phenomena

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Coronal mass ejections (CMEs) are considered as one of the driving sources of space weather. They are usually associated with many physical phenomena, e.g. flares, coronal dimmings, and sigmoids. To detect these phenomena, traditional supervised-learning methods assumed that at most one event occurred in a CME; therefore each CME instance is associated with a single label and the phenomenon is processed in isolation. This simplifying assumption does not fit well, as CMEs might have multiple events simultaneously. We propose to detect multiple CME-associated events by multi-label learning methods. With the data available from the Atmospheric Imaging Assembly (AIA) and the Large Angle and Spectrometric Coronagraph (LASCO), texture features representing the events are extracted from all of the associated and not-associated CMEs and converted into feature vectors for multi-label learning use. Then a function is learned to predict the proper label sets for CMEs, such that eight events, i.e. coronal dimming, coronal hole, coronal jet, coronal wave, filament, filament eruption, flare, and sigmoid, are detected explicitly. To test the proposed detection algorithm, we adopt the four-fold cross-validation strategy on a set of 551 labeled CMEs from AIA. Experimental results demonstrate the good performance of the multi-label classification methods in terms of test error.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Algorithm 1
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Ahmed, O.W., Qahwaji, R., Colak, T., Higgins, P.A., Gallagher, P.T., Bloomfield, D.S.: 2013, Solar flare prediction using advanced feature extraction, machine learning, and feature selection. Solar Phys. 283, 157. DOI . ADS .

    Article  ADS  Google Scholar 

  • Al-Omari, M., Qahwaji, R., Colak, T., Ipson, S.: 2010, Machine leaning-based investigation of the associations between cmes and filaments. Solar Phys. 262, 511. DOI . ADS .

    Article  ADS  Google Scholar 

  • Attrill, G., Wills-Davey, M.: 2010, Automatic detection and extraction of coronal dimmings from sdo/aia data. Solar Phys. 262, 461. DOI . ADS .

    Article  ADS  Google Scholar 

  • Bobra, M.G., Ilonidis, S.: 2016, Predicting coronal mass ejections using machine learning methods. Astrophys. J. 821, 127.

    Article  ADS  Google Scholar 

  • Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., et al.: 1995, The Large Angle Spectroscopic Coronagraph (LASCO). Solar Phys. 162, 357. DOI . ADS .

    Article  ADS  Google Scholar 

  • Buchlin, É., Mercier, C., Engin, S., Parenti, S., Vial, J.: 2010, Automated detection of filaments in sdo data. In: Boissier, S., Heydari-Malayeri, M., Samadi, R., Valls-Gabaud, D. (eds.) SF2A-2010: Proc. Annu. Meeting French Soc. Astron. Astrophys. 297.

    Google Scholar 

  • Burges, C.J.C.: 1998, A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 2, 121.

    Article  Google Scholar 

  • Byrne, J.P., Morgan, H., Habbal, S.R., Gallagher, P.T.: 2012, Automatic detection and tracking of coronal mass ejections. ii. multiscale filtering of coronagraph images. Astrophys. J. 752, 145.

    Article  ADS  Google Scholar 

  • Caballero, C., Aranda, M.: 2014, Automatic tracking of active regions and detection of solar flares in solar euv images. Solar Phys. 289, 1643. DOI . ADS .

    Article  ADS  Google Scholar 

  • Cohen, O., Attrill, G.D., Manchester IV, W.B., Wills-Davey, M.J.: 2009, Numerical simulation of an euv coronal wave based on the 2009 February 13 cme event observed by stereo. Astrophys. J. 705, 587.

    Article  ADS  Google Scholar 

  • Domingo, V., Fleck, B., Poland, A.: 1995, The soho mission: an overview. Solar Phys. 162, 1. DOI . ADS .

    Article  ADS  Google Scholar 

  • Durak, N., Nasraoui, O.: 2008, Feature exploration for mining coronal loops from solar images. In: 2008 20th IEEE Internat. Conf. on Tools with Artificial Intelligence 1, IEEE Press, New York, 547.

    Chapter  Google Scholar 

  • Fürnkranz, J., Hüllermeier, E., Mencía, E.L., Brinker, K.: 2008, Multilabel classification via calibrated label ranking. Mach. Learn. 73, 133.

    Article  Google Scholar 

  • Gibson, S., Fan, Y., Török, T., Kliem, B.: 2006, The evolving sigmoid: evidence for magnetic flux ropes in the corona before, during, and after cmes. Space Sci. Rev. 124, 131.

    Article  ADS  Google Scholar 

  • Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: 2009, The weka data mining software: an update. ACM SIGKDD Explor. Newsl. 11, 10.

    Article  Google Scholar 

  • Haralick, R.M., Shanmugam, K., Dinstein, I.H.: 1973, Textural features for image classification. IEEE Trans. Syst. Man Cybern. smc-3, 610.

    Article  Google Scholar 

  • Holdsworth, D., Bewsher, D.: 2012, Identifying coronal dimming as the onset for cmes with the solar dynamics observatory, www.uclan.ac.uk/students/research/crit/files/Daniel_Holdsworth.pdf .

  • Howard, T.A., Harrison, R.A.: 2004, On the coronal mass ejection onset and coronal dimming. Solar Phys. 219, 315. DOI . ADS .

    Article  ADS  Google Scholar 

  • Howard, T.A., Tappin, S.J.: 2008, Three-dimensional reconstruction of two solar coronal mass ejections using the stereo spacecraft. Solar Phys. 252, 373. DOI . ADS .

    Article  ADS  Google Scholar 

  • Indyk, W., Kajdanowicz, T., Kazienko, P.: 2013, Relational large scale multi-label classification method for video categorization. Multimed. Tools Appl. 65, 63.

    Article  Google Scholar 

  • Jiang, Y., Yang, J., Hong, J., Bi, Y., Zheng, R.: 2011, Sympathetic filament eruptions connected by coronal dimmings. Astrophys. J. 738, 179.

    Article  ADS  Google Scholar 

  • Jing, J., Yurchyshyn, V.B., Yang, G., Xu, Y., Wang, H.: 2004, On the relation between filament eruptions, flares, and coronal mass ejections. Astrophys. J. 614, 1054.

    Article  ADS  Google Scholar 

  • Kingsbury, N.: 1998, The dual-tree complex wavelet transform: a new technique for shift invariance and directional filters. Image Process., 319.

  • Krista, L.D., Gallagher, P.T.: 2009, Automated coronal hole detection using local intensity thresholding techniques. Solar Phys. 256, 87. DOI . ADS .

    Article  ADS  Google Scholar 

  • LaBonte, B., Rust, D., Bernasconi, P.: 2002, An automated system for detecting sigmoids in solar x-ray images. In: AGU Spring Meeting Abs. 1, 02.

    Google Scholar 

  • Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C.: 2012, The atmospheric imaging assembly (aia) on the solar dynamics observatory (sdo). Solar Phys. 275, 17. DOI . ADS .

    Article  ADS  Google Scholar 

  • Li, H., Manjunath, B., Mitra, S.: 1994, Multisensor image fusion using the wavelet transform. Graph. Models Image Process. 57, 235.

    Article  Google Scholar 

  • Lima, A.C.E., De Castro, L.N.: 2014, A multi-label, semi-supervised classification approach applied to personality prediction in social media. Neural Netw. 58, 122.

    Article  Google Scholar 

  • Liu, J.-J., Wang, Y.-M., Shen, C.-L., Liu, K., Pan, Z.-H., Wang, S.: 2015, A solar coronal jet event triggers a coronal mass ejection. Astrophys. J. 813, 115.

    Article  ADS  Google Scholar 

  • Martens, P., Attrill, G., Davey, A., Engell, A., Farid, S., Grigis, P., Kasper, J., Korreck, K., Saar, S., Savcheva, A., et al.: 2012, Computer vision for the solar dynamics observatory (sdo). Solar Phys. 275, 79. DOI ADS .

    Article  ADS  Google Scholar 

  • McIntosh, S.W., De Pontieu, B., Tomczyk, S.: 2008, A coherence-based approach for tracking waves in the solar corona. Solar Phys. 252, 321. DOI . ADS .

    Article  ADS  Google Scholar 

  • Mohamed, A., Gopalswamy, N., Yashiro, S., Akiyama, S., Mäkelä, P., Xie, H., Jung, H.: 2012, The relation between coronal holes and coronal mass ejections during the rise, maximum, and declining phases of solar cycle 23. J. Geophys. Res. Space Phys. 117(A1).

  • Morgan, H., Byrne, J.P., Habbal, S.R.: 2012, Automatically detecting and tracking coronal mass ejections. i. separation of dynamic and quiescent components in coronagraph images. Astrophys. J. 752, 144.

    Article  ADS  Google Scholar 

  • Nguyen, T.T., Willis, C.P., Paddon, D.J., Nguyen, S.H., Nguyen, H.S.: 2005, Data mining approach to the sunspot classification problem. In: Rough Set Techniques in Knowledge Discovery and Data Mining, 53.

    Google Scholar 

  • Qahwaji, R., Colak, T.: 2007, Automatic short-term solar flare prediction using machine learning and sunspot associations. Solar Phys. 241, 195. DOI . ADS .

    Article  ADS  Google Scholar 

  • Reinard, A., Biesecker, D.: 2009, The relationship between coronal dimming and coronal mass ejection properties. Astrophys. J. 705, 914.

    Article  ADS  Google Scholar 

  • Reiss, M.A., Hofmeister, S.J., Visscher, R.D., Temmer, M., Veronig, A.M., Delouille, V., Mampaey, B., Ahammer, H.: 2015, Improvements on coronal hole detection in sdo/aia images using supervised classification. Space Weather Space Clim. 5, A23.

    Article  Google Scholar 

  • Rotter, T., Veronig, A., Temmer, M., Vrsnak, B.: 2014, Real-time solar wind forecasting based on coronal hole data. In: EGU Gen. Assemb. Conf. Abs. 16, 910.

    Google Scholar 

  • Schuh, M., Banda, J., Bernasconi, P., Angryk, R., Martens, P.: 2014, A comparative evaluation of automated solar filament detection. Solar Phys. 289, 2503. DOI . ADS .

    Article  ADS  Google Scholar 

  • Shapire, R.E., Singer, Y.: 2000, Boostexter: a boosting-based system for text categorization. Mach. Learn. 39, 135.

    Article  MATH  Google Scholar 

  • Sterling, A.C.: 2000, Sigmoid cme source regions at the sun: some recent results. J. Atmos. Solar-Terr. Phys. 62, 1427.

    Article  ADS  Google Scholar 

  • Sych, R., Nakariakov, V.M.: 2008, The pixelised wavelet filtering method to study waves and oscillations in time sequences of solar atmospheric images. Solar Phys. 248, 395. DOI . ADS .

    Article  ADS  Google Scholar 

  • Taylor, P.E., Almeida, G.J., Kanade, T., Hodgins, J.K.: 2010, Classifying human motion quality for knee osteoarthritis using accelerometers. In: Engineering in Medicine and Biology Society (EMBC), 2010 Annu. Internat. Conf. IEEE, IEEE Press, New York, 339.

    Chapter  Google Scholar 

  • Temmer, M., Veronig, A., Gopalswamy, N., Yashiro, S.: 2011, Relation between the 3d-geometry of the coronal wave and associated cme during the 26 April 2008 event. Solar Phys. 273, 421. DOI . ADS .

    Article  ADS  Google Scholar 

  • Tomczyk, S., McIntosh, S., Keil, S., Judge, P., Schad, T., Seeley, D., Edmondson, J.: 2007, Alfvén waves in the solar corona. Science 317, 1192.

    Article  ADS  Google Scholar 

  • Trohidis, K., Tsoumakas, G., Kalliris, G., Vlahavas, I.P.: 2008, Multi-label classification of music into emotions. ismir 8:325-330. EURASIP J. Audio Speech Music Process. 2011, 325.

    Google Scholar 

  • Tsoumakas, G., Katakis, I.: 2010, Multi-label classification: an overview. Int. J. Data Warehous. Min. 3, 1.

    Article  Google Scholar 

  • Tsoumakas, G., Vlahavas, I.: 2007, Random k-labelsets: an ensemble method for multilabel classification. In: Machine Learning: ECML 2007, Springer, Berlin, 406.

    Chapter  Google Scholar 

  • Tsoumakas, G., Spyromitros-Xioufis, E., Vilcek, J., Vlahavas, I.: 2011, Mulan: a Java library for multi-label learning. J. Mach. Learn. Res. 12, 2411.

    MathSciNet  MATH  Google Scholar 

  • Vršnak, B., Sudar, D., Ruždjak, D.: 2005, The cme-flare relationship: are there really two types of cmes. Astron. Astrophys. 435, 1149.

    Article  ADS  Google Scholar 

  • Xu, J.: 2011, An extended one-versus-rest support vector machine for multi-label classification. Neurocomputing 74, 3114.

    Article  Google Scholar 

  • Zhang, M.-L.: 2009, Ml-rbf: rbf neural networks for multi-label learning. Neural Process. Lett. 29(2), 61.

    Article  ADS  Google Scholar 

  • Zhang, M.-L., Wu, L.: 2011, Lift: multi-label learning with label-specific features. IEEE Trans. Pattern Anal. Mach. Intell. 37, 1609.

    Google Scholar 

  • Zhang, M.-L., Zhou, Z.-H.: 2006, Multilabel neural networks with applications to functional genomics and text categorization. IEEE Trans. Knowl. Data Eng. 18, 1338.

    Article  Google Scholar 

  • Zhang, M., Zhou, Z.: 2014, A review on multi-label learning algorithms. IEEE Trans. Knowl. Data Eng. 26, 1819.

    Article  Google Scholar 

  • Zheng, R., Jiang, Y., Yang, J., Bi, Y., Hong, J., Yang, D., Yang, B.: 2012, An extreme ultraviolet wave associated with a micro-sigmoid eruption. Astrophys. J. Lett. 753, L29.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China (Nos. 61772435, 61573292, and 61572407), the National Science and Technology Support Program (No. 2015BAH19F02) and the open project of the key laboratory of solar activity in the Chinese Academy of Sciences. AIA data are courtesy of NASA/SDO and the AIA science team.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Peng.

Ethics declarations

Disclosure of Potential Conflicts of Interests

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y.H., Tian, H.M., Peng, B. et al. Multi-label Learning for Detection of CME-Associated Phenomena. Sol Phys 292, 131 (2017). https://doi.org/10.1007/s11207-017-1136-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-017-1136-x

Keywords

Navigation