Skip to main content
Log in

LYRA Mid-Term Periodicities

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

The spectra of the PROBA2/LYRA data, similarly to every other solar time series, show predominant periodicities that can be of solar or instrumental origin. In this article, we compare the main periodicities characterizing the LYRA spectrum to those found in the sunspot number, in the 10.7 cm flux, in an X-ray flare index, and in the sunspot area evolution. We focused on the 2010 to 2014 time range, for which the LYRA data are available, although we also briefly address the evolution of the main periodicities in the longer range. The mid-term periodicities at \({\sim}\,28\), \({\sim}\,44\), \({\sim}\,54\), \({\sim}\,59\), \({\sim}\,100\), \({\sim}\,110\), and \({\sim}\,150\) days appear as highly significant in several analyzed datasets. The consistency of distinct periodicities between datasets provides characteristics for the global Sun. This consistency also strengthens the reliability of LYRA data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Abreu, J.A., Beer, J., Steinhilber, F., Tobias, S.M., Weiss, N.O.: 2008, For how long will the current grand maximum of solar activity persist? Geophys. Res. Lett. 35, L20109. DOI .

    Article  ADS  Google Scholar 

  • Bai, T., Sturrock, P.A.: 1993, Evidence for a fundamental period of the Sun and its relation to the 154 day complex of periodicities. Astrophys. J. 409, 476. DOI .

    Article  ADS  Google Scholar 

  • Chowdhury, P., Choudhary, D.P., Gosain, S., Moon, Y.-J.: 2015, Short-term periodicities in interplanetary, geomagnetic and solar phenomena during solar cycle 24. Astrophys. Space Sci. 356, 7. DOI .

    Article  ADS  Google Scholar 

  • Dominique, M., Hochedez, J.-F., Schmutz, W., Dammasch, I.E., Shapiro, A.I., Kretzschmar, M., Zhukov, A.N., Gillotay, D., Stockman, Y., BenMoussa, A.: 2013, The LYRA instrument onboard PROBA2: description and in-flight performance. Solar Phys. 286, 21. DOI .

    Article  ADS  Google Scholar 

  • Eddy, J.A.: 1977, Climate and the changing sun. Clim. Change 1(2), 173. DOI .

    Article  MathSciNet  Google Scholar 

  • Getko, R.: 2014, The Ten-Rotation Quasi-periodicity in Sunspot Areas. Solar Phys. 289, 2269. DOI .

    Article  ADS  Google Scholar 

  • Horne, J.H., Baliunas, S.L.: 1986, A prescription for period analysis of unevenly sampled time series. Astrophys. J. 302, 757. DOI .

    Article  ADS  Google Scholar 

  • Joshi, B., Joshi, A.: 2005, Intermediate-term periodicities in soft X-ray flare index during solar cycles 21, 22 and 23. Solar Phys. 226, 153. DOI .

    Article  ADS  Google Scholar 

  • Joshi, B., Pant, P., Manoharan, P.K.: 2006, Periodicities in sunspot activity during solar cycle 23. Astron. Astrophys. 452, 647. DOI .

    Article  ADS  Google Scholar 

  • Krivova, N.A., Solanki, S.K.: 2002, The 1.3-year and 156-day periodicities in sunspot data: wavelet analysis suggests a common origin. Astron. Astrophys. 394, 701. DOI .

    Article  ADS  Google Scholar 

  • Lean, J.L., Brueckner, G.E.: 1989, Intermediate-term solar periodicities – 100 – 500 days. Astrophys. J. 337, 568. DOI .

    Article  ADS  Google Scholar 

  • Lomb, N.R.: 1976, Least-squares frequency analysis of unequally spaced data. Astrophys. Space Sci. 39, 447. DOI .

    Article  ADS  Google Scholar 

  • Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: 2007, Numerical Recipes. The Art of Scientific Computing, 3rd edn. Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Rieger, E., Kanbach, G., Reppin, C., Share, G.H., Forrest, D.J., Chupp, E.L.: 1984, A 154-day periodicity in the occurrence of hard solar flares. Nature 312, 623. DOI .

    Article  ADS  Google Scholar 

  • Scargle, J.D.: 1982, Studies in astronomical time series analysis. II – Statistical aspects of spectral analysis of unevenly spaced data. Astrophys. J. 263, 835. DOI .

    Article  ADS  Google Scholar 

  • Stuiver, M., Braziunas, T.F.: 1989, Atmospheric C-14 and century-scale solar oscillations. Nature 338, 405. DOI .

    Article  ADS  Google Scholar 

  • Sturrock, P.A., Bai, T.: 1992, Search for evidence of a clock related to the solar 154 day complex of periodicities. Astrophys. J., 337. DOI .

  • Sturrock, P.A., Scargle, J.D., Walther, G., Wheatland, M.S.: 1999, Rotational signature and possible R-mode signature in the GALLEX Solar neutrino data. Astrophys. J. Lett. 523, L177. DOI .

    Article  ADS  Google Scholar 

  • Tan, B., Cheng, Z.: 2013, The mid-term and long-term solar quasi-periodic cycles and the possible relationship with planetary motions. Astrophys. Space Sci. 343, 511. DOI .

    Article  ADS  Google Scholar 

  • Torrence, C., Compo, G.P.: 1998, A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc., 61. DOI .

  • Usoskin, I.G., Solanki, S.K., Kovaltsov, G.A.: 2007, Grand minima and maxima of solar activity: new observational constraints. Astron. Astrophys. 471, 301. DOI .

    Article  ADS  Google Scholar 

  • Vaughan, S.: 2005, A simple test for periodic signals in red noise. Astron. Astrophys. 431, 391. DOI .

    Article  ADS  Google Scholar 

  • Wolff, C.L.: 1983, The rotational spectrum of g-modes in the Sun. Astrophys. J. 264, 667. DOI .

    Article  ADS  Google Scholar 

Download references

Acknowledgement

LYRA is a project of the Centre Spatial de Liege, the Physikalisch-Meteorologisches Observatorium Davos and the Royal Observatory of Belgium funded by the Belgian Federal Science Policy Office (BELSPO) and by the Swiss Bundesamt fur Bildung und Wissenschaft. We acknowledge WDC-SILSO for the Daily Sunspot Number data, the Royal Observatory of Belgium, Brussels and NGDC for other solar data. The wavelet software provided by C. Torence and G. Campo is also acknowledged. We wish to express our gratitude to D. Berghmans for internally reviewing our paper. We also wish to express our gratitude to S. Willems for her help in the plot design. The authors acknowledge the support from the Belgian Federal Science Policy Office through the ESA-PRODEX programme, the Solar-Terrestrial Center of Excellence, as well as the Belgian Network CHARM (Contemporary physical challenges in Heliospheric and AstRophysical Models, IAP P07/08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Wauters.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Appendix

Appendix

Figure 5
figure 5

Lomb–Scargle periodograms obtained for the sunspot number and F10.7. The periodicities (abscissa) are plotted in days. Three levels of significance are drawn (straight lines) at 50, 95, and 99 %.

Figure 6
figure 6

Lomb–Scargle periodograms obtained for the flare index and the sunspot area. The periodicities (abscissa) are plotted in days. Three levels of significance are drawn (straight lines) at 50, 95, and 99 %.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wauters, L., Dominique, M. & Dammasch, I.E. LYRA Mid-Term Periodicities. Sol Phys 291, 2135–2144 (2016). https://doi.org/10.1007/s11207-016-0960-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-016-0960-8

Keywords

Navigation