Skip to main content
Log in

Particle Acceleration in Collapsing Magnetic Traps with a Braking Plasma Jet

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Collapsing magnetic traps (CMTs) are one proposed mechanism for generating non-thermal particle populations in solar flares. CMTs occur if an initially stretched magnetic field structure relaxes rapidly into a lower-energy configuration, which is believed to happen as a by-product of magnetic reconnection. A similar mechanism for energising particles has also been found to operate in the Earth’s magnetotail. One particular feature proposed to be of importance for particle acceleration in the magnetotail is that of a braking plasma jet, i.e. a localised region of strong flow encountering stronger magnetic field which causes the jet to slow down and stop. Such a feature has not been included in previously proposed analytical models of CMTs for solar flares. In this work we incorporate a braking plasma jet into a well studied CMT model for the first time. We present results of test particle calculations in this new CMT model. We observe and characterise new types of particle behaviour caused by the magnetic structure of the jet braking region, which allows electrons to be trapped both in the braking jet region and the loop legs. We compare and contrast the behaviour of particle orbits for various parameter regimes of the underlying trap by examining particle trajectories, energy gains and the frequency with which different types of particle orbit are found for each parameter regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

Notes

  1. There are no contributions to the parallel guiding centre velocity from the parallel electric field since \(E_{\parallel}= 0\) in ideal MHD. This means that mirroring due to the parallel electric field cannot occur (see Threlfall et al., 2016).

References

  • Artemyev, A.V.: 2014, Charged-particle acceleration in braking plasma jets. Phys. Rev. E 89, 033108. DOI . http://link.aps.org/doi/10.1103/PhysRevE.89.033108 .

    Article  ADS  Google Scholar 

  • Birn, J., Hesse, M.: 1996, Details of current disruption and diversion in simulations of magnetotail dynamics. J. Geophys. Res. 101, 15345. DOI . ADS .

    Article  ADS  Google Scholar 

  • Birn, J., Artemyev, A.V., Baker, D.N., Echim, M., Hoshino, M., Zelenyi, L.M.: 2012, Particle acceleration in the magnetotail and aurora. Space Sci. Rev. 173(1–4), 49. DOI . http://dx.doi.org/10.1007/s11214-012-9874-4 .

    Article  ADS  Google Scholar 

  • Bogachev, S.A., Somov, B.V.: 2001, Acceleration of charged particles in collapsing magnetic traps during solar flares. Astron. Rep. 45, 157. DOI . ADS .

    Article  ADS  Google Scholar 

  • Bogachev, S.A., Somov, B.V.: 2005, Comparison of the Fermi and betatron acceleration efficiencies in collapsing magnetic traps. Astron. Lett. 31, 537. DOI . ADS .

    Article  ADS  Google Scholar 

  • Bogachev, S.A., Somov, B.V.: 2007, Formation of power-law electron spectra in collapsing magnetic traps. Astron. Lett. 33, 54. DOI . ADS .

    Article  ADS  Google Scholar 

  • Bogachev, S.A., Somov, B.V.: 2009, Effect of Coulomb collisions on the particle acceleration in collapsing magnetic traps. Astron. Lett. 35, 57. DOI . ADS .

    Article  ADS  Google Scholar 

  • Cargill, P.J.: 1991, The interaction of collisionless shocks in astrophysical plasmas. Astrophys. J. 376, 771. DOI . ADS .

    Article  ADS  Google Scholar 

  • Cargill, P.J., Vlahos, L., Baumann, G., Drake, J.F., Nordlund, Å.: 2012, Current fragmentation and particle acceleration in solar flares. Space Sci. Rev. 173, 223. DOI . ADS .

    Article  ADS  Google Scholar 

  • Cash, J.R., Karp, A.H.: 1990, A variable order Runge–Kutta method for initial-value problems with rapidly varying right-hand sides. ACM Trans. Math. Softw. 16, 201. DOI .

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, B., Bastian, T.S., Shen, C., Gary, D.E., Krucker, S., Glesener, L.: 2015, Particle acceleration by a solar flare termination shock. Science 350, 1238. DOI . ADS .

    Article  ADS  Google Scholar 

  • Eradat Oskoui, S., Neukirch, T.: 2014, Particle energisation in a collapsing magnetic trap model: the relativistic regime. Astron. Astrophys. 567, A131. DOI . ADS .

    Article  ADS  Google Scholar 

  • Eradat Oskoui, S., Neukirch, T., Grady, K.J.: 2014, Loss cone evolution and particle escape in collapsing magnetic trap models in solar flares. Astron. Astrophys. 563, A73. DOI . ADS .

    Article  ADS  Google Scholar 

  • Fu, H.S., Cao, J.B., Khotyaintsev, Y.V., Sitnov, M.I., Runov, A., Fu, S.Y., Hamrin, M., André, M., Retinò, A., Ma, Y.D., Lu, H.Y., Wei, X.H., Huang, S.Y.: 2013, Dipolarization fronts as a consequence of transient reconnection: In situ evidence. Geophys. Res. Lett. 40, 6023. DOI . ADS .

    Article  ADS  Google Scholar 

  • Giuliani, P., Neukirch, T., Wood, P.: 2005, Particle motion in collapsing magnetic traps in solar flares. I. Kinematic theory of collapsing magnetic traps. Astrophys. J. 635, 636. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gordovskyy, M., Browning, P.K., Vekstein, G.E.: 2010a, Particle acceleration in a transient magnetic reconnection event. Astron. Astrophys. 519, A21. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gordovskyy, M., Browning, P.K., Vekstein, G.E.: 2010b, Particle acceleration in fragmenting periodic reconnecting current sheets in solar flares. Astrophys. J. 720, 1603. DOI . ADS .

    Article  ADS  Google Scholar 

  • Grady, K.J., Neukirch, T.: 2009, An extension of the theory of kinematic MHD models of collapsing magnetic traps to 2.5D with shear flow and to 3D. Astron. Astrophys. 508, 1461. DOI . ADS .

    Article  ADS  Google Scholar 

  • Grady, K.J., Neukirch, T., Giuliani, P.: 2012, A systematic examination of particle motion in a collapsing magnetic trap model for solar flares. Astron. Astrophys. 546, A85. DOI . ADS .

    Article  ADS  Google Scholar 

  • Imada, S., Nakamura, R., Daly, P.W., Hoshino, M., Baumjohann, W., Mühlbachler, S., Balogh, A., Rème, H.: 2007, Energetic electron acceleration in the downstream reconnection outflow region. J. Geophys. Res. (Space Phys.) 112, A03202. DOI . ADS .

    Article  ADS  Google Scholar 

  • Karlický, M., Bárta, M.: 2006, X-ray loop-top source generated by processes in a flare collapsing trap. Astrophys. J. 647, 1472. DOI . ADS .

    Article  ADS  Google Scholar 

  • Karlický, M., Kosugi, T.: 2004, Acceleration and heating processes in a collapsing magnetic trap. Astron. Astrophys. 419, 1159. DOI . ADS .

    Article  ADS  Google Scholar 

  • Khotyaintsev, Y.V., Cully, C.M., Vaivads, A., André, M., Owen, C.J.: 2011, Plasma jet braking: Energy dissipation and nonadiabatic electrons. Phys. Rev. Lett. 106, 165001. DOI . http://link.aps.org/doi/10.1103/PhysRevLett.106.165001 .

    Article  ADS  Google Scholar 

  • Litvinenko, Y.E.: 1996, Particle acceleration in reconnecting current sheets with a nonzero magnetic field. Astrophys. J. 462, 997. DOI . ADS .

    Article  ADS  Google Scholar 

  • Mann, G., Warmuth, A., Aurass, H.: 2009, Generation of highly energetic electrons at reconnection outflow shocks during solar flares. Astron. Astrophys. 494, 669. DOI . ADS .

    Article  ADS  MATH  Google Scholar 

  • Miller, J.A., Cargill, P.J., Emslie, A.G., Holman, G.D., Dennis, B.R., LaRosa, T.N., Winglee, R.M., Benka, S.G., Tsuneta, S.: 1997, Critical issues for understanding particle acceleration in impulsive solar flares. J. Geophys. Res. 102, 14631. DOI . ADS .

    Article  ADS  Google Scholar 

  • Minoshima, T., Masuda, S., Miyoshi, Y.: 2010, Drift-kinetic modeling of particle acceleration and transport in solar flares. Astrophys. J. 714, 332. DOI . ADS .

    Article  ADS  Google Scholar 

  • Minoshima, T., Masuda, S., Miyoshi, Y., Kusano, K.: 2011, Coronal electron distribution in solar flares: Drift-kinetic model. Astrophys. J. 732, 111. DOI . ADS .

    Article  ADS  Google Scholar 

  • Miteva, R., Mann, G.: 2007, The electron acceleration at shock waves in the solar corona. Astron. Astrophys. 474, 617. DOI . ADS .

    Article  ADS  MATH  Google Scholar 

  • Northrop, T.G.: 1963, The Adiabatic Motion of Charged Particles, John Wiley & Sons, Inc., New York.

    MATH  Google Scholar 

  • Shibata, K., Magara, T.: 2011, Solar flares: Magnetohydrodynamic processes. Living Rev. Solar Phys. 8, 6. DOI . ADS .

    Article  ADS  Google Scholar 

  • Sitnov, M.I., Swisdak, M.: 2011, Onset of collisionless magnetic reconnection in two-dimensional current sheets and formation of dipolarization fronts. J. Geophys. Res. 116, 12216. DOI . ADS .

    Article  Google Scholar 

  • Somov, B.V., Bogachev, S.A.: 2003, The betatron effect in collapsing magnetic traps. Astron. Lett. 29, 621. DOI . ADS .

    Article  ADS  Google Scholar 

  • Somov, B.V., Kosugi, T.: 1997, Collisionless reconnection and high-energy particle acceleration in solar flares. Astrophys. J. 485, 859. ADS .

    Article  ADS  Google Scholar 

  • Threlfall, J., Neukirch, T., Parnell, C.E., Eradat Oskoui, S.: 2015a, Particle acceleration at a reconnecting magnetic separator. Astron. Astrophys. 574, A7. DOI . ADS .

    Article  ADS  Google Scholar 

  • Threlfall, J., Bourdin, P.-A., Neukirch, T., Parnell, C.E.: 2016, Particle dynamics in a non-flaring solar active region model. Astron. Astrophys. 587, A4. ADS .

    Article  ADS  Google Scholar 

  • Tsuneta, S., Naito, T.: 1998, Fermi acceleration at the fast shock in a solar flare and the impulsive loop-top hard X-ray source. Astrophys. J. Lett. 495, L67. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wood, P., Neukirch, T.: 2005, Electron acceleration in reconnecting current sheets. Solar Phys. 226, 73. DOI . ADS .

    Article  ADS  Google Scholar 

  • Zharkova, V.V., Arzner, K., Benz, A.O., Browning, P., Dauphin, C., Emslie, A.G., Fletcher, L., Kontar, E.P., Mann, G., Onofri, M., Petrosian, V., Turkmani, R., Vilmer, N., Vlahos, L.: 2011, Recent advances in understanding particle acceleration processes in solar flares. Space Sci. Rev. 159, 357. DOI . ADS .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

AB would like to thank the University of St Andrews for financial support from the 7th Century Scholarship and the Scottish Government for support from the Saltire Scholarship. TN and JT gratefully acknowledge the support of the UK Science and Technology Funding Council (Consolidated Grant ST/K000950/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexei Borissov.

Appendix A: Description of Transformation

Appendix A: Description of Transformation

Here we discuss how the transformation defining the analytical fields is obtained. For a detailed discussion of the theory behind the transformation method see Giuliani, Neukirch, and Wood (2005). We start with an initial stretched configuration similar to that in Giuliani, Neukirch, and Wood (2005) to which a front with a sharp increase in magnetic field strength is added. Behind the front the field lines are closer to their equilibrium configuration, similar to what is suggested in Artemyev (2014). The \(y\)-component of the transformation used in this paper, restricted to \(x = 0~\mbox{Mm}\) is shown in Figure 12 for multiple values of \(t\).

Figure 12
figure 12

Transformation with \(x = 0~\mbox{Mm}\) (in centre of CMT). Regions for which \(y_{\infty}< y\) correspond to stretching, while regions with \(y_{\infty}> y\) correspond to compression. For a fixed time, the front is located in the region where \(y_{\infty}\) increases rapidly. The dashed line is a visual aid, set at \(y_{\infty}= y\).

Vertical stretching corresponds to \(y_{\infty}< y\), whereas for compression \(y_{\infty}> y\). Figure 12 shows that when \(t = 0~\mbox{s}\) and \(y < 60~\mbox{Mm}\), \(y_{\infty}< y\), which corresponds to a vertical stretching. As the front passes a given \(y\) the value of \(y_{\infty}\) increases rapidly, indicating compression caused by the front. The transformation shown in Figure 12 is given by

$$ y_{\infty}= S + y\frac{1 + \tanh\phi}{2}, $$
(13)

where the first term, \(S\), defines the shape of the field before the front has passed. The second term describes the shape of the front, where \(\phi= 0\) is the location of the front. The function \(\phi\) depends on position and time. It satisfies \(\phi< 0\) before the front passes a particular location and \(\phi> 0\) after the front has passed.

One choice for the first term of Equation (13) that produces the desired vertical stretching is

$$\begin{aligned} S =& s\log \biggl(1 + \frac{y}{s} \biggr) \biggl(1 - \frac{1 - \tanh(y - y')}{2}\cdot\frac{\tanh(x + x') - \tanh(x - x')}{2} \biggr) \\ & {}+ y \biggl(\frac{1 - \tanh(y - y')}{2}\cdot\frac{\tanh(x + x') - \tanh(x - x')}{2} \biggr). \end{aligned}$$
(14)

This choice imposes a stretching of the form \(s\log (1 + y/s )\) for points outside the box given by \(0 \leq y \leq y'\) and \(-x' \leq x \leq x'\), and leaves the interior untransformed (i.e. in its final configuration). We currently do not confine the box in the \(x\) direction by setting \(x' = 100\) (outside of the region we investigate in this paper).

To choose a functional form for \(\phi\) we consider the front position determined by

$$ \phi= y - v_{\phi}\sigma\tanh (t/\sigma )- y_{0}. $$
(15)

The location of the front is given by \(\phi= 0\). For small values of \(t\) the location of the front is \(y = y_{0} + v_{\phi}\sigma\tanh (t/\sigma )\simeq y_{0} + v_{\phi}t\), which means that the front propagates with a constant speed. For larger values of \(t\), \(\tanh (t/\sigma )\) approaches a constant, meaning the front slows down and stops. Calculating

$$ \lim_{t \to\infty} \bigl(y_{0} + v_{\phi}\sigma \tanh (t/\sigma ) \bigr)= y_{0} + v_{\phi}\sigma $$
(16)

shows that the parameter \(\sigma\) controls how deeply the front penetrates into the equilibrium loops at the bottom of the trap because it determines the final location of the front.

It is possible to modify the steepness of the front (which in turn affects the strength of the electric and magnetic fields at the front) by increasing the gradient of \(\phi\). We achieve this by multiplying the expression given in Equation (15) by the factor \(\alpha ( (y + 1 ) (s_{o} x^{2} + 1 ) )^{\beta}\). The factor \((y+1)^{\beta}\) causes the transformation to be steeper for larger values of \(y\). Multiplication of \(\phi\) by the factor \((y+1)^{\beta}\) changes the shape of the loops, so the factor \((s_{o} x^{2} + 1 )^{\beta}\) is added to correct for this effect. The functions \(J\) and \(T\) (given in Equation (17)) are added to further modify the shape of the CMT:

$$ J = d \mathrm{e}^{-x^{2} y /w}, \qquad T = k \tan \biggl( \frac{\pi}{2} \frac{x^{2}}{w_{2}} \biggr)\tanh y. $$
(17)

The function \(J\) produces an indentation in the jet braking region. The indentation takes the form of an exponential with its depth and width determined by the parameters \(d\) and \(w\). The function \(T\) modifies the shape of the trap for large values of \(|x|\) to maintain the shape of the loops.

Artemyev (2014) suggests that as the braking jet propagates the front may become steeper. In the transformation described above the front becomes shallower as the jet propagates towards the solar surface. The reason for this is that as the braking jet approaches the lower loops it is travelling slow enough that the magnetic flux that piled up previously spreads out. The spreading out of the magnetic flux causes the front to become less steep and eventually disappear. Nevertheless, closer to the reconnection region the outflow is faster and the magnetic field not as strong so we expect to see a steepening front. To incorporate this steepening into our model \(\phi\) and \(T\) are multiplied by the factor \(1 + \frac{1}{2} [\chi\sin (\pi y/y_{0} )- 1 ] [1 - \tanh(\zeta(t - t')) ]\). This corresponds to multiplying \(\phi\) and \(T\) by \(\chi\sin (\pi y/y_{0} )\) when \(t \ll t'\), producing a steepening of the transformation near \(y = y_{0}\). The result is the transformation presented in Equations (3)–(7).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borissov, A., Neukirch, T. & Threlfall, J. Particle Acceleration in Collapsing Magnetic Traps with a Braking Plasma Jet. Sol Phys 291, 1385–1404 (2016). https://doi.org/10.1007/s11207-016-0915-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-016-0915-0

Keywords

Navigation