Skip to main content
Log in

Influence of the Solar Global Magnetic-Field Structure Evolution on CMEs

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We consider the influence of the solar global magnetic-field structure (GMFS) cycle evolution on the occurrence rate and parameters of coronal mass ejections (CMEs) in Solar Cycles 23 – 24. It has been shown that, over solar cycles, CMEs are not distributed randomly, but they are regulated by evolutionary changes in the GMFS. It is proposed that the generation of magnetic Rossby waves in the solar tachocline results in the GMFS cycle changes. Each Rossby wave period favors a particular GMFS. It is proposed that the changes in wave periods result in GMFS reorganization and consequently in CME location, occurrence rate, and parameter changes. The CME rate and parameters depend on the sharpness of the GMFS changes, the strength of the global magnetic field, and the phase of a cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Alexander, D., Harvey, K.L., Hudson, H.S., Hoeksema, J.T., Zhao, X.: 1996, The large scale eruptive event of 1994 April 14. In: Winterhalter, D., Gosling, J.T., Habbal, S.R., Kurth, W.S., Neugebauer, M. (eds.) Solar Wind Eight CP-382, Am. Inst. Phys., New York, 80. DOI .

    Google Scholar 

  • Altschuler, M.D., Newkirk, G.: 1969, Magnetic fields and the structure of the solar corona. I: Methods of calculating coronal fields. Solar Phys. 9, 131. DOI .

    Article  ADS  Google Scholar 

  • Altschuler, M.D., Trotter, D.E., Newkirk, G.J., Howard, R.: 1975, Tabulation of the harmonic coefficients of the solar magnetic fields. Solar Phys. 41, 225. DOI .

    Article  ADS  Google Scholar 

  • Altschuler, M.D., Levine, R.H., Stix, M., Harvey, J.: 1977, High resolution mapping of the magnetic field of the solar corona. Solar Phys. 51, 345. DOI .

    Article  ADS  Google Scholar 

  • Antalova, A., Gnevyshev, M.N.: 1965, Principal characteristics of the 11-year solar activity cycle. Soviet Astron. 9, 198.

    ADS  Google Scholar 

  • Bai, T.: 1990, Solar ‘hot spots’ are still hot. Astrophys. J. Lett. 364, L17. DOI .

    Article  ADS  Google Scholar 

  • Ballester, J.L., Oliver, R., Baudin, F.: 1999, Discovery of the near 158 day periodicity in group sunspot numbers during the eighteenth century. Astrophys. J. Lett. 522, L153. DOI .

    Article  ADS  Google Scholar 

  • Bemporad, A., Sterling, A.S., Moore, R.L., Poletto, G.: 2005, A new variety of coronal mass ejection: streamer puffs from compact ejective flares. Astrophys. J. 635, L189. DOI .

    Article  ADS  Google Scholar 

  • Benevolenskaya, E.E.: 1998, A model of the double magnetic cycle of the Sun. Astrophys. J. Lett. 509, L49. DOI .

    Article  ADS  Google Scholar 

  • Benevolenskaya, E.E.: 2003, Impulses of activity and the solar cycle. Solar Phys. 216, 325. DOI .

    Article  ADS  Google Scholar 

  • Bilenko, I.A.: 2009, Geoefficiency of solar eruptive events. Geomagn. Aeron. 49, 1114. DOI .

    Article  ADS  Google Scholar 

  • Bilenko, I.A.: 2012, Formation of coronal mass ejections at different phases of solar activity. Geomagn. Aeron. 52, 1005. DOI .

    Article  ADS  Google Scholar 

  • Bravo, S., Blanco-Cano, X., Nikiforova, E.: 1998, Different types of coronal mass ejections at minimum and maximum of solar activity and their relation to magnetic field evolution. Solar Phys. 180, 461. DOI .

    Article  ADS  Google Scholar 

  • Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., Socker, D.G., Dere, K.P., Lamy, P.L., Llebaria, A., Bout, M.V., Schwenn, R., Simnett, G.M., Bedford, D.K., Eyles, C.J.: 1995, The Large Angle Spectroscopic Coronagraph (LASCO). Solar Phys. 162, 357. DOI .

    Article  ADS  Google Scholar 

  • Chen, P.F., Shibata, K.: 2000, An emerging flux trigger mechanism for coronal mass ejections. Astrophys. J. 545, 524. DOI .

    Article  ADS  Google Scholar 

  • Cremades, H., St. Cyr, O.C.: 2007, Coronal mass ejections: solar cycle aspects. Adv. Space Res. 40, 1042. DOI .

    Article  ADS  Google Scholar 

  • Du, Z.L.: 2012, Correlations between CME parameters and sunspot activity. Solar Phys. 278, 203. DOI .

    Article  ADS  Google Scholar 

  • Fainshtein, V.G., Ivanov, E.V.: 2010, Relationship between CME parameters and large-scale structure of solar magnetic fields. Sun Geosph. 5, 28.

    ADS  Google Scholar 

  • Falconer, D.A., Moore, R.L., Gary, G.A.: 2002, Correlation of the coronal mass ejection productivity of solar active regions with measures of their global nonpotentiality from vector magnetograms: baseline results. Astrophys. J. 569, 1016. DOI .

    Article  ADS  Google Scholar 

  • Filippov, B.P., Gopalswamy, N., Lozhechkin, A.V.: 2002, Motion of an eruptive prominence in the solar corona. Astron. Rep. 46, 417. DOI .

    Article  ADS  Google Scholar 

  • Floyd, O., Lamy, P., Llebaria, A.: 2014, The interaction between coronal mass ejections and streamers: a statistical view over 15 years (1995 – 2010). Solar Phys. 289, 1313. DOI .

    Article  ADS  Google Scholar 

  • Forbes, T.G.: 2000, A review on the genesis of coronal mass ejections. J. Geophys. Res. 105, 23153. DOI .

    Article  ADS  Google Scholar 

  • Forbes, T.G., Linker, J.A., Chen, J., Cid, C., Kóta, J., Lee, M.A., Mann, G., Mikić, Z., Potgieter, M.S., Schmidt, J.M., Siscoe, G.L., Vainio, R., Antiochos, S.K., Riley, P.: 2006, CME theory and models. Space Sci. Rev. 123, 251. DOI .

    Article  ADS  Google Scholar 

  • Frozini, B.V.: 1987, On the distribution and power of a goodness-of-fit statistic with parametric and nonparametric applications. In: Revesz, P., Sarkadi, K., Sen, P.K. (eds.) Goodness-of-Fit, North-Holland, Amsterdam, 133.

    Google Scholar 

  • Gao, P.X., Li, K.J., Xu, J.C.: 2011, Distributions of energy and mass of coronal mass ejections. Solar Phys. 273, 117. DOI .

    Article  ADS  Google Scholar 

  • Gerontidou, M., Mavromichalaki, H., Asvestari, E., Belov, A., Kurt, V.: 2010, Fluctuations of CMEs characteristics during the declining phase of the last solar cycle. In: Tsinganos, K., Hatzidimitriou, D., Matsakos, T. (eds.) Proc. 9th Internat. Conf. Hellenic Astron. Soc. CS-424, Astron. Soc. Pac., San Francisco, 37.

    Google Scholar 

  • Gilman, P.A.: 1969a, A Rossby-wave dynamo for the Sun, I. Solar Phys. 8, 316. DOI .

    Article  ADS  Google Scholar 

  • Gilman, P.A.: 1969b, A Rossby-wave dynamo for the Sun. II. Solar Phys. 9, 3. DOI .

    Article  ADS  Google Scholar 

  • Gilman, P.A., Fox, P.A.: 1999, Joint instability of latitudinal differential rotation and toroidal magnetic fields below the solar convection zone. III Unstable disturbance phenomenology and the solar cycle. Astrophys. J. 522, 1167. DOI .

    Article  ADS  Google Scholar 

  • Gnevyshev, M.N.: 1963, The corona and the 11-year cycle of solar activity. Soviet Astron. 7, 311.

    ADS  Google Scholar 

  • Gnevyshev, M.N.: 1966, The eleven-year cycle in solar emission. Sov. Phys. Usp. 9, 387.

    Google Scholar 

  • Gnevyshev, M.N.: 1967, On the 11-years cycle of solar activity. Solar Phys. 1, 107. DOI .

    Article  ADS  Google Scholar 

  • Gnevyshev, M.N.: 1977, Essential features of the 11-year solar cycle. Solar Phys. 51, 175. DOI .

    Article  ADS  Google Scholar 

  • Gopalswamy, N.: 2005, Coronal mass ejections and other extreme characteristics of the 2003 October – November solar eruptions. J. Geophys. Res. 110, A09S15. DOI .

    ADS  Google Scholar 

  • Gopalswamy, N.: 2006, Coronal mass ejections of solar cycle 23. J. Astrophys. Astron. 27, 243. DOI .

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Yashiro, S., Michalek, G., Stenborg, G., Vourlidas, A., Freeland, S., Howard, R.: 2009, The SOHO/LASCO CME catalog. Earth Moon Planets 104, 295. DOI .

    Article  ADS  Google Scholar 

  • Harrison, R.A., Hildner, E., Hundhausen, A.J., Sime, D.G., Simnett, G.M.: 1990, The launch of solar coronal mass ejections – results from the coronal mass ejection onset program. J. Geophys. Res. 95, 917. DOI .

    Article  ADS  Google Scholar 

  • Harrison, R.A., Davis, C.J., Bewsher, D., Davies, J.A., Eyles, C.J., Crothers, S.R.: 2010, Coronal mass ejections in the heliosphere. Adv. Space Res. 45, 1. DOI .

    Article  ADS  Google Scholar 

  • Hewish, A., Bravo, S.: 1986, The sources of large-scale heliospheric disturbances. Solar Phys. 106, 185. DOI .

    Article  ADS  Google Scholar 

  • Hiei, E., Hundhausen, A.J., Sime, D.G.: 1993, Reformation of a coronal helmet streamer by magnetic reconnection after a coronal mass ejection. Geophys. Res. Lett. 20, 2785. DOI .

    Article  ADS  Google Scholar 

  • Hildner, E., Gosling, J.T., MacQueen, R.M., Munro, R.H., Poland, A.I., Ross, C.L.: 1976, Frequency of coronal transients and solar activity. Solar Phys. 48, 127. DOI .

    Article  ADS  Google Scholar 

  • Hoeksema, J.T.: 1991, Large-scale solar and heliospheric magnetic fields. Adv. Space Res. 11, 15.

    Article  ADS  Google Scholar 

  • Hoeksema, J.T., Scherrer, P.H.: 1986, An atlas of photospheric magnetic field observations and computed coronal magnetic fields: 1976 – 1985. Solar Phys. 105, 205. DOI .

    Article  ADS  Google Scholar 

  • Hoeksema, J.T., Scherrer, P.H.: 1988, Long-term variability of solar magnetic-fields. Adv. Space Res. 8, 177.

    Article  ADS  Google Scholar 

  • Howard, R.A., Sheeley, N.R.J., Michels, D.J., Koomen, M.J.: 1985, Coronal mass ejections – 1979 – 1981. J. Geophys. Res. 90, 8173. DOI .

    Article  ADS  Google Scholar 

  • Howard, T.A., Nandy, D., Koepke, A.C.: 2008, Kinematic properties of solar coronal mass ejections: correction for projection effects in spacecraft coronagraph measurements. J. Geophys. Res. 113, A01104. DOI .

    ADS  Google Scholar 

  • Hudson, H., Fletcher, L., McTiernan, J.: 2014, Cycle 23 variation in solar flare productivity. Solar Phys. 289, 1341. DOI .

    Article  ADS  Google Scholar 

  • Hudson, H.S., Li, Y.: 2010, Flare and CME properties and rates at sunspot minimum. In: Cranmer, S.R., Hoeksema, J.T., Kohl, J.L. (eds.) SOHO-23: Understanding a Peculiar Solar Minimum CS-428, Astron. Soc. Pac., San Francisco, 153.

    Google Scholar 

  • Hundhausen, A.J.: 1993, Sizes and locations of coronal mass ejections: SMM observations from 1980 and 1984 – 1989. J. Geophys. Res. 98, 13177. DOI .

    Article  ADS  Google Scholar 

  • Hundhausen, A.J., Burkepile, J.T., St. Cyr, O.C.: 1994, Speeds of coronal mass ejections: SMM observations from 1980 and 1984 – 1989. J. Geophys. Res. 99, 6543. DOI .

    Article  ADS  Google Scholar 

  • Hundhausen, A.J., Sawyer, C.B., House, L., Illing, R.M.E., Wagner, W.J.: 1984, Coronal mass ejections observed during the solar maximum mission – latitude distribution and rate of occurrence. J. Geophys. Res. 89, 2639. DOI .

    Article  ADS  Google Scholar 

  • Illing, R.M.E., Hundhausen, A.J.: 1986, Disruption of a coronal streamer by an eruptive prominence and coronal mass ejection. J. Geophys. Res. 91, 10951. DOI .

    Article  ADS  Google Scholar 

  • Ivanov, E.V., Obridko, V.N., Shelting, B.D.: 1997, Large-scale structure of the solar magnetic fields and coronal mass ejections. Astron. Zh. 74, 273.

    Google Scholar 

  • Ivanov, E.V., Obridko, V.N.: 2001, Cyclic variations of CME velocity. Solar Phys. 198, 179. DOI .

    Article  ADS  Google Scholar 

  • Ivanov, E.V., Obridko, V.N., Nepomnyashchaya, E.V., Kutilina, N.V.: 1999, Relevance of CME to the structure of large-scale solar magnetic fields. Solar Phys. 184, 369. DOI .

    Article  ADS  Google Scholar 

  • Kahler, S.: 1987, Coronal mass ejections. Rev. Geophys. 25, 663. DOI .

    Article  ADS  Google Scholar 

  • Khan, J.I., Hudson, H.S.: 2000, Homologous sudden disappearances of transequatorial interconnecting loops in the solar corona. Geophys. Res. Lett. 27, 1083. DOI .

    Article  ADS  Google Scholar 

  • Kotov, V.A.: 1994, The general magnetic field of the Sun as a star. Izv. Krym. Astrofis. Obs. 91, 124.

    ADS  Google Scholar 

  • Kovalenko, V.A.: 1988, Manifestation of solar activity in solar wind particle flux density. Planet. Space Sci. 36, 1343. DOI .

    Article  ADS  Google Scholar 

  • Kuhn, J.R., Armstrong, J.D., Bush, R.I., Scherrer, P.: 2000, Rossby waves on the Sun as revealed by solar ‘hills’. Nature 405, 544.

    Article  ADS  Google Scholar 

  • Lamy, P., Barlyaeva, T., Llebaria, A., Floyd, O.: 2014, Comparing the solar minima of cycles 22/23 and 23/24: the view from LASCO white light coronal images. J. Geophys. Res. 119, 47. DOI .

    Article  Google Scholar 

  • Lara, A.: 2008, The source region of coronal mass ejections. Astrophys. J. 688, 647. DOI .

    Article  ADS  Google Scholar 

  • Lara, A., Gopalswamy, N., Caballero-López, R.A., Yashiro, S., Xie, H., Valdés-Galicia, J.F.: 2005, Coronal mass ejections and galactic cosmic-ray modulation. Astrophys. J. 625, 441. DOI .

    Article  ADS  Google Scholar 

  • Levine, R.H.: 1979, Spatial distribution of large-scale solar magnetic fields and their relation to the interplanetary magnetic field. Solar Phys. 62, 277. DOI .

    Article  ADS  Google Scholar 

  • Li, K.J., Gao, P.X., Li, Q.X., Mu, J., Su, T.W.: 2009, Cyclical behavior of coronal mass ejections. Solar Phys. 257, 149. DOI .

    Article  ADS  Google Scholar 

  • Liu, Y., Luhmann, J.G., Lin, R.P., Bale, S.D., Vourlidas, A., Petrie, G.J.D.: 2009, Coronal mass ejections and global coronal magnetic field reconfiguration. Astrophys. J. Lett. 698, L51. DOI .

    Article  ADS  Google Scholar 

  • Lou, Y.-Q.: 2000, Rossby-type wave induced periodicities in flare activities and sunspot areas or groups during solar maxima. Astrophys. J. 540, 1102. DOI .

    Article  ADS  Google Scholar 

  • Lou, Y.-Q., Wang, Y.-M., Fan, Z., Wang, S., Wang, J.X.: 2003, Periodicities in solar coronal mass ejections. Mon. Not. Roy. Astron. Soc. 345, 809. DOI .

    Article  ADS  Google Scholar 

  • Low, B.C.: 1996, Solar activity and the corona. Solar Phys. 167, 217. DOI .

    Article  ADS  Google Scholar 

  • Low, B.C.: 2001, Coronal mass ejections, magnetic flux ropes, and solar magnetism. J. Geophys. Res. 106, 25141. DOI .

    Article  ADS  Google Scholar 

  • Luhmann, J.G., Gosling, J.T., Hoeksema, J.T., Zhao, X.: 1998, The relationship between large-scale solar magnetic field evolution and coronal mass ejections. J. Geophys. Res. 103, 6585. DOI .

    Article  ADS  Google Scholar 

  • Ma, S., Attrill, G.D.R., Golub, L., Lin, J.: 2010, Statistical study of coronal mass ejections with and without distinct low coronal signatures. Astrophys. J. 722, 289. DOI .

    Article  ADS  Google Scholar 

  • McAllister, A.H., Kurokawa, H., Shibata, K., Nitta, N.: 1996, A filament eruption and accompanying coronal field changes on November 5, 1992. Solar Phys. 169, 123. DOI .

    Article  ADS  Google Scholar 

  • Mendoza, B., Pérez-Enriquez, R.: 1993, Association of coronal mass ejections with the heliomagnetic current sheet. J. Geophys. Res. 98, 9365. ADS . DOI .

    Article  ADS  Google Scholar 

  • Munro, R.H., Gosling, J.T., Hildner, E., MacQueen, R.M., Poland, A.I., Ross, C.L.: 1979, The association of coronal mass ejection transients with other forms of solar activity. Solar Phys. 61, 201. DOI .

    Article  ADS  Google Scholar 

  • Obridko, V.N., Ivanov, E.V., Özgüç, A., Kilcik, A., Yurchyshyn, V.B.: 2012, Coronal mass ejections and the index of effective solar multipole. Solar Phys. 281, 779. DOI .

    Article  ADS  Google Scholar 

  • Petrie, G.J.D.: 2013, Solar magnetic activity cycles, coronal potential field models and eruption rates. Astrophys. J. 768, 162. DOI .

    Article  ADS  Google Scholar 

  • Ramesh, K.B.: 2010, Coronal mass ejections and sunspots – solar cycle perspective. Astrophys. J. Lett. 712, L77. DOI .

    Article  ADS  Google Scholar 

  • Robbrecht, E., Berghmans, D., Van der Linden, R.A.M.: 2009, Automated LASCO CME catalog for solar cycle 23: are CMEs scale invariant? Astrophys. J. 691, 1222. DOI .

    Article  ADS  Google Scholar 

  • Robbrecht, E., Patsourakos, S., Vourlidas, A.: 2009, No trace left behind: STEREO observation of a coronal mass ejection without low coronal signatures. Astrophys. J. 701, 283. DOI .

    Article  ADS  Google Scholar 

  • Schatten, K.H., Wilcox, J.M., Ness, N.F.: 1969, A model of interplanetary and coronal magnetic fields. Solar Phys. 6, 442. DOI .

    Article  ADS  Google Scholar 

  • Schmieder, B.: 2006, Magnetic source regions of coronal mass ejections. J. Astrophys. Astron. 27, 139. DOI .

    Article  ADS  Google Scholar 

  • Schwenn, R.: 2006, Living Rev. Solar Phys. 3, 2. DOI .

    Article  ADS  Google Scholar 

  • Sime, D.G.: 1989, Coronal mass ejection rate and the evolution of the large-scale k-coronal density distribution. J. Geophys. Res. 94, 151. DOI .

    Article  ADS  Google Scholar 

  • Spearman, C.: 1904, The proof and measurement of association between two things. Am. J. Psychol. 15, 72.

    Article  Google Scholar 

  • St. Cyr, O.C., Plunkett, S.P., Michels, D.J., Paswaters, S.E., Koomen, M.J., Simnett, G.M., Thompson, B.J., Gurman, J.B., Schwenn, R., Webb, D.F., Hildner, E., Lamy, P.L.: 2000, Properties of coronal mass ejections: SOHO LASCO observations from January 1996 to June 1998. J. Geophys. Res. 105, 18169. DOI .

    Article  ADS  Google Scholar 

  • Steinolfson, R.S., Hundhausen, A.J.: 1988, Density and white light brightness in looplike coronal mass ejections – temporal evolution. J. Geophys. Res. 93, 14269. DOI .

    Article  ADS  Google Scholar 

  • Sterling, A.C., Hudson, H.S., Thompson, B.J., Zarro, D.M.: 2000, Yohkoh SXT and SOHO EIT observations of sigmoid-to-arcade evolution of structures associated with halo coronal mass ejections. Astrophys. J. 532, 628. DOI .

    Article  ADS  Google Scholar 

  • Sturrock, P.A., Walther, G., Wheatland, M.S.: 1997, Search for periodicities in the homestake solar neutrino data. Astrophys. J. 491, 409.

    Article  ADS  Google Scholar 

  • Sturrock, P.A., Scargle, J.D., Walther, G., Wheatland, M.S.: 1999, Rotational signature and possible R-mode signature in the Gallex solar neutrino data. Astrophys. J. 523, L177. DOI .

    Article  ADS  Google Scholar 

  • Subramanian, P., Dere, K.P., Rich, N.B., Howard, R.A.: 1999, The relationship of coronal mass ejections to streamers. J. Geophys. Res. 104, 22321. DOI .

    Article  ADS  Google Scholar 

  • Tikhomolov, E.: 1995, Rossby vortices as sources of global magnetic structures on the Sun. Solar Phys. 156, 205. DOI .

    Article  ADS  Google Scholar 

  • Tikhomolov, E.M., Mordvinov, V.I.: 1996, The peculiar behavior of the large-scale components of the solar magnetic field as a result of Rossby vortex excitation beneath the convection zone. Astrophys. J. 472, 389. DOI .

    Article  ADS  Google Scholar 

  • Vourlidas, A., Howard, R.A., Esfandiari, E., Patsourakos, S., Yashiro, S., Michalek, G.: 2010, Comprehensive analysis of coronal mass ejection mass and energy properties over a full solar cycle. Astrophys. J. 722, 1522. DOI .

    Article  ADS  Google Scholar 

  • Vourlidas, A., Howard, R.A., Esfandiari, E., Patsourakos, S., Yashiro, S., Michalek, G.: 2011, Erratum: comprehensive analysis of coronal mass ejection mass and energy properties over a full solar cycle (Astrophys. J. 722, 1522, 2010). Astrophys. J. 730, 59. DOI .

    Article  ADS  Google Scholar 

  • Wald, A., Wolfowitz, J.: 1943, An exact test for randomness in the non-parametric case based on serial correlation. Ann. Math. Stat. 14, 378.

    Article  MATH  MathSciNet  Google Scholar 

  • Wang, Y.-M., Colaninno, R.: 2014, Is solar cycle 24 producing more coronal mass ejections than cycle 23? Astrophys. J. Lett. 784, L27. DOI .

    Article  ADS  Google Scholar 

  • Wang, Y.-M., Sheeley, N.R. Jr.: 1992, On potential field models of the solar corona. Astrophys. J. 392, 310. DOI .

    Article  ADS  Google Scholar 

  • Webb, D.F.: 1991, The solar cycle variation of the rates of CMEs and related activity. Adv. Space Res. 11, 37. DOI .

    Article  ADS  Google Scholar 

  • Webb, D.F., Howard, R.A.: 1994, The solar cycle variation of coronal mass ejections and the solar wind mass flux. J. Geophys. Res. 99, 4201. DOI .

    Article  ADS  Google Scholar 

  • Wen, Y., Wang, J., Maia, D.J.F., Zhang, Y., Zhao, H., Zhou, G.: 2006, Spatial and temporal scales of coronal magnetic restructuring in the development of coronal mass ejections. Solar Phys. 239, 257. DOI .

    Article  ADS  Google Scholar 

  • Yashiro, S., Gopalswamy, N., Michalek, G., St. Cyr, O.C., Plunkett, S.P., Rich, N.B., Howard, R.A.: 2004, A catalog of white light coronal mass ejections observed by the SOHO spacecraft. J. Geophys. Res. 109, AO07105. DOI .

    ADS  Google Scholar 

  • Yashiro, S., Michalek, G., Akiyama, S., Gopalswamy, N., Howard, R.A.: 2008, Spatial relationship between solar flares and coronal mass ejections. Astrophys. J. 673, 1174. DOI .

    Article  ADS  Google Scholar 

  • Zaqarashvili, T.V., Carbonell, M., Oliver, R., Ballester, J.L.: 2010a, Magnetic Rossby waves in the solar tachocline and Rieger-type periodicities. Astrophys. J. 709, 749. DOI .

    Article  ADS  Google Scholar 

  • Zaqarashvili, T.V., Carbonell, M., Oliver, R., Ballester, J.L.: 2010b, Quasi-biennial oscillations in the solar tachocline caused by magnetic Rossby wave instabilities. Astrophys. J. Lett. 724, L95. DOI .

    Article  ADS  Google Scholar 

  • Zhao, X., Hoeksema, J.T.: 1996, Effect of coronal mass ejections on the structure of the heliospheric current sheet. J. Geophys. Res. 101, 4825. DOI .

    Article  ADS  Google Scholar 

  • Zhou, G.P., Wang, J.X., Zhang, J.: 2006, Large-scale source regions of Earth-directed coronal mass ejections. Astron. Astrophys. 445, 1133. DOI .

    Article  ADS  Google Scholar 

  • Zolotova, N.V., Ponyavin, D.I.: 2012, Impulse-like behavior of the sunspot activity. Astron. Rep. 56, 250. DOI .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This CME catalog is generated and maintained at the CDAW Data Center by NASA and The Catholic University of America in cooperation with the Naval Research Laboratory. SOHO is a project of international cooperation between ESA and NASA.

The Wilcox Solar Observatory data used in this study were obtained via the web site wso.stanford.edu on 19 October 2013 06:34:02 PDT courtesy of J.T. Hoeksema. The Wilcox Solar Observatory is currently supported by NASA.

Information from the Space Weather Prediction Center (SWPC), Boulder, CO, National Oceanic and Atmospheric Administration (NOAA), US Dept. of Commerce was used ( www.swpc.noaa.gov ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina A. Bilenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bilenko, I.A. Influence of the Solar Global Magnetic-Field Structure Evolution on CMEs. Sol Phys 289, 4209–4237 (2014). https://doi.org/10.1007/s11207-014-0572-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-014-0572-0

Keywords

Navigation