Skip to main content
Log in

Resonant Damping of Propagating Kink Waves in Time-Dependent Magnetic Flux Tube

I. Zero Plasma-\(\pmb{\upbeta}\)

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We explore the notion of resonant absorption in a dynamic time-dependent magnetised plasma background. Very many works have investigated resonance in the Alfvén and slow MHD continua under both ideal and dissipative MHD regimes. Jump conditions in static and steady systems have been found in previous works, connecting solutions at both sides of the resonant layer. Here, we derive the jump conditions in a temporally dependent, magnetised, inhomogeneous plasma background to leading order in the Wentzel–Kramers–Billouin (WKB) approximation. Next, we exploit the results found in Williamson and Erdélyi (Solar Phys. 289, 899, 2014) to describe the evolution of the jump condition in the dynamic model considered. The jump across the resonant point is shown to increase exponentially in time. We determined the damping as a result of the resonance over the same time period and investigated the temporal evolution of the damping itself. We found that the damping coefficient, as a result of the evolution of the resonance, decreases as the density gradient across the transitional layer decreases. This has the consequence that in such time-dependent systems resonant absorption may not be as efficient as time progresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Andries, J., Arregui, I., Goossens, M.: 2005, Determination of the coronal density stratification from the observation of harmonic coronal loop oscillations. Astrophys. J. Lett. 624, L57.

    Article  ADS  Google Scholar 

  • Andries, J., van Doorsselaere, T., Roberts, B., Verth, G., Verwichte, E., Erdélyi, R.: 2009, Coronal seismology by means of kink oscillation overtones. Space Sci. Rev. 149, 3.

    Article  ADS  Google Scholar 

  • Aschwanden, M.J.: 2004, Physics of the Solar Corona. An Introduction, Praxis, Chichester, 23.

    Google Scholar 

  • Banerjee, D., Erdélyi, R., Oliver, R., O’Shea, E.: 2007, Present and future observing trends in atmospheric magnetoseismology. Solar Phys. 246, 3.

    Article  ADS  Google Scholar 

  • Bender, C.M., Orszag, S.A.: 1978, Advanced Mathematical Methods for Scientists and Engineers, McGraw-Hill, New York, 484.

    MATH  Google Scholar 

  • Cally, P.S.: 1991, Phase-mixing and surface waves: A new interpretation. J. Plasma Phys. 45, 453.

    Article  ADS  Google Scholar 

  • De Moortel, I.: 2009, Longitudinal waves in coronal loops. Space Sci. Rev. 149, 65.

    Article  ADS  Google Scholar 

  • De Moortel, I., Hood, A.W.: 2004, The damping of slow MHD waves in solar coronal magnetic fields. II. The effect of gravitational stratification and field line divergence. Astron. Astrophys. 415, 705.

    Article  ADS  Google Scholar 

  • Díaz, A.J., Oliver, R., Ballester, J.L.: 2006, Fast magnetohydrodynamic oscillations in coronal loops with heating profiles. Astrophys. J. 645, 766.

    Article  ADS  Google Scholar 

  • Edwin, P.M., Roberts, B.: 1982, Wave propagation in a magnetically structured atmosphere III. Solar Phys. 76, 239.

    Article  ADS  Google Scholar 

  • Erdélyi, R., Fedun, V.: 2010, Magneto-acoustic waves in compressible magnetically twisted flux tubes. Solar Phys. 263, 63.

    Article  ADS  Google Scholar 

  • Erdélyi, R., Verth, G.: 2007, The effect of density stratification on the amplitude profile of transversal coronal loop oscillations. Astron. Astrophys. 462, 743.

    Article  ADS  Google Scholar 

  • Goossens, M., Erdélyi, R., Ruderman, M.S.: 2011, Resonant MHD waves in the solar atmosphere. Space Sci. Rev. 158, 289.

    Article  ADS  Google Scholar 

  • Goossens, M., Hollweg, J.V., Sakurai, T.: 1992, Resonant behavior of MHD waves on magnetic flux tubes. III – effect of equilibrium flow. Solar Phys. 138, 233.

    Article  ADS  Google Scholar 

  • Goossens, M., Ruderman, M., Hollweg, J.: 1995, Dissipative MHD solutions for resonant Alfvén waves in 1-dimensional magnetic flux tubes. Solar Phys. 157, 75.

    Article  ADS  Google Scholar 

  • Grossmann, W., Tataronis, J.: 1973, Decay of MHD waves by phase mixing. Z. Phys. 261, 217.

    Article  ADS  Google Scholar 

  • Heyvaerts, J., Priest, E.R.: 1983, Coronal heating by phase-mixed shear Alfvén waves. Astron. Astrophys. 117, 220.

    ADS  MATH  Google Scholar 

  • Ionson, J.A.: 1978, Resonant absorption of Alfvénic surface waves and the heating of solar coronal loops. Astrophys. J. 226, 650.

    Article  ADS  Google Scholar 

  • Krall, N.A., Trivelpiece, A.W.: 1986, Principles of Plasma Physics, San Francisco Press, San Francisco. Section 8.6.2.

    Google Scholar 

  • Mathioudakis, M., Jess, D.B., Erdélyi, R.: 2013, Alfvén waves in the solar atmosphere. From theory to observations. Space Sci. Rev. 175, 1.

    Article  ADS  Google Scholar 

  • Morton, R.J., Erdélyi, R.: 2010, Application of the theory of damping of kink oscillations by radiative cooling of coronal loop plasma. Astron. Astrophys. 519, A43.

    Article  Google Scholar 

  • Morton, R.J., Hood, A.W., Erdélyi, R.: 2010, Propagating magneto-hydrodynamic waves in a cooling homogenous coronal plasma. Astron. Astrophys. 512, A23.

    Article  ADS  Google Scholar 

  • Morton, R.J., Verth, G., Jess, D.B., Kuridze, D., Ruderman, M.S., Mathioudakis, M., Erdélyi, R.: 2012, Observations of ubiquitous compressive waves in the Sun’s chromosphere. Nature Commun. 3, 1315.

    Article  ADS  Google Scholar 

  • Porter, L.J., Klimchuk, J.A., Sturrock, P.A.: 1994, The possible role of MHD waves in heating the solar corona. Astrophys. J. 435, 482.

    Article  ADS  Google Scholar 

  • Priest, E.R.: 2003, Solar Magnetohydrodynamics, Reidel, Dordrecht, 38.

    Google Scholar 

  • Roberts, B.: 2000, Waves and oscillations in the corona – (invited review). Solar Phys. 193, 139.

    Article  ADS  Google Scholar 

  • Ruderman, M.S.: 2011, Resonant damping of kink oscillations of cooling coronal magnetic loops. Astron. Astrophys. 534, A78.

    Article  ADS  Google Scholar 

  • Ruderman, M., Erdélyi, R.: 2009, Transverse oscillations of coronal loops. Space Sci. Rev. 149, 199.

    Article  ADS  Google Scholar 

  • Ruderman, M., Verth, G., Erdélyi, R.: 2008, Transverse oscillations of longitudinally stratified coronal loops with variable cross section. Astrophys. J. 686, 694.

    Article  ADS  Google Scholar 

  • Sakurai, T., Goossens, M., Hollweg, J.: 1991, Resonant behavior of MHD waves on magnetic flux tubes 1. Solar Phys. 133, 227.

    Article  ADS  Google Scholar 

  • Soler, R., Ruderman, M.S., Goossens, M.: 2012, Damped kink oscillations of flowing prominence threads. Astron. Astrophys. 546, A82.

    Article  ADS  Google Scholar 

  • Van Doorsselaere, T., Andries, J., Poedts, S., Goossens, M.: 2004, Damping of coronal loop oscillations: calculation of resonantly damped kink oscillations of one-dimensional nonuniform loops. Astrophys. J. 606, 1223.

    Article  ADS  Google Scholar 

  • Verth, G., Erdélyi, R.: 2008, Effect of longitudinal magnetic and density inhomogeneity on transversal coronal loop oscillations. Astron. Astrophys. 486, 1015.

    Article  ADS  MATH  Google Scholar 

  • Voitenko, Y., Goossens, M.: 2000, Competition of damping mechanisms for the phase-mixed Alfvén waves in the solar corona. Astron. Astrophys. 357, 1086.

    ADS  Google Scholar 

  • Wang, T.: 2011, Standing slow-mode waves in hot coronal loops: observations, modeling, and coronal seismology. Space Sci. Rev. 158, 397.

    Article  ADS  Google Scholar 

  • Williamson, A., Erdélyi, R.: 2014, Linear MHD wave propagation in time-dependent flux tube. I. Zero plasma-β. Solar Phys. 289, 899.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Williamson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Williamson, A., Erdélyi, R. Resonant Damping of Propagating Kink Waves in Time-Dependent Magnetic Flux Tube. Sol Phys 289, 4105–4115 (2014). https://doi.org/10.1007/s11207-014-0569-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-014-0569-8

Keywords

Navigation