Skip to main content
Log in

Radial Speed Evolution of Interplanetary Coronal Mass Ejections During Solar Cycle 23

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We report radial-speed evolution of interplanetary coronal mass ejections (ICMEs) detected by the Large Angle and Spectrometric Coronagraph onboard the Solar and Heliospheric Observatory (SOHO/LASCO), interplanetary scintillation (IPS) at 327 MHz, and in-situ observations. We analyze solar-wind disturbance factor (g-value) data derived from IPS observations during 1997 – 2009 covering nearly the whole period of Solar Cycle 23. By comparing observations from SOHO/LASCO, IPS, and in situ, we identify 39 ICMEs that could be analyzed carefully. Here, we define two speeds [V SOHO and V bg], which are the initial speed of the ICME and the speed of the background solar wind, respectively. Examinations of these speeds yield the following results: i) Fast ICMEs (with V SOHOV bg>500 km s−1) rapidly decelerate, moderate ICMEs (with 0 km s−1V SOHOV bg≤500 km s−1) show either gradually decelerating or uniform motion, and slow ICMEs (with V SOHOV bg<0 km s−1) accelerate. The radial speeds converge on the speed of the background solar wind during their outward propagation. We subsequently find; ii) both the acceleration and the deceleration are nearly complete by 0.79±0.04 AU, and those are ended when the ICMEs reach a 480±21 km s−1. iii) For ICMEs with (V SOHOV bg)≥0 km s−1, i.e. fast and moderate ICMEs, a linear equation a=−γ 1(VV bg) with γ 1=6.58±0.23×10−6 s−1 is more appropriate than a quadratic equation a=−γ 2(VV bg)|VV bg| to describe their kinematics, where γ 1 and γ 2 are coefficients, and a and V are the acceleration and speed of ICMEs, respectively, because the χ 2 for the linear equation satisfies the statistical significance level of 0.05, while the quadratic one does not. These results support the assumption that the radial motion of ICMEs is governed by a drag force due to interaction with the background solar wind. These findings also suggest that ICMEs propagating faster than the background solar wind are controlled mainly by the hydrodynamic Stokes drag.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Abbreviations

ACE:

Advanced Composition Explorer

AU:

Astronomical unit

CC:

Correlation coefficient

CDAW:

Coordinated Data Analysis Workshop

CME:

Coronal mass ejection

CPI:

Comprehensive Plasma Instrumentation

ESA:

European Space Agency

FOV:

Field-of-view

GSFC:

Goddard Space Flight Center

ICME:

Interplanetary coronal mass ejection

IDED:

IPS disturbance event day

IDEDs:

IPS disturbance event days

IMP:

Interplanetary Monitoring Platform

IPS:

Interplanetary Scintillation

LASCO:

Large Angle and Spectrometric Coronagraph

LOS:

Line-of-sight

MIT:

Massachusetts Institute of Technology Faraday Cup Experiment

NASA:

National Aeronautics and Space Administration

OMNI:

Operating Missions as Nodes on the Internet

SOHO:

Solar and Heliospheric Observatory

STEL:

Solar-Terrestrial Environment Laboratory

STEREO:

Solar-Terrestrial Relations Observatory

SWE:

Solar Wind Experiment

SWEPAM:

Solar Wind Electron, Proton, and Alpha Monitor

References

  • Andrews, M.D.: 2001, LASCO and EIT observations of the Bastille Day 2000 solar storm. Solar Phys. 204, 181. doi: 10.1023/A:1014215923912 .

    Article  ADS  Google Scholar 

  • Asai, K., Ishida, Y., Kojima, M., Maruyama, K., Misawa, H., Yoshimi, N.: 1995, Multi-station system for solar wind observations using the interplanetary scintillation method. J. Geomagn. Geoelectr. 47, 1107.

    Article  Google Scholar 

  • Bellomo, A., Mavretic, A.: 1978, MIT plasma experiment on IMP H and J Earth orbited satellites. MIT Center for Space Research Technical Report CSR-TR-78-2.

  • Bisi, M.M., Breen, A.R., Jackson, B.V., Fallows, R.A., Walsh, A.P., Mikić, Z., Riley, P., Owen, C.J., Gonzalez-Esparza, A., Aguilar-Rodriguez, E., et al.: 2010, From the Sun to the Earth: the 13 May 2005 coronal mass ejection. Solar Phys. 265, 49. doi: 10.1007/s11207-010-9602-8 .

    Article  ADS  Google Scholar 

  • Brueckner, G.E., Howard, R.A., Kooman, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., Socker, D.G., Dere, K.P., Lamy, P.L., Llebaria, A., et al.: 1995, The large angle spectroscopic coronagraph (LASCO). Solar Phys. 162, 357. doi: 10.1007/BF00733434 .

    Article  ADS  Google Scholar 

  • Cargill, P.J.: 2004, On the aerodynamic drag force acting on interplanetary coronal mass ejections. Solar Phys. 221, 135. doi: 10.1023/B:SOLA-0000033366-10725-a2 .

    Article  ADS  Google Scholar 

  • Chen, J.: 1996, Theory of prominence eruption and propagation: interplanetary consequences. J. Geophys. Res. 101(A12), 27499. doi: 10.1029/96JA02644 .

    Article  ADS  Google Scholar 

  • Coles, W.A., Harmon, J.K., Lazarus, A.J., Sullivan, J.D.: 1978, Comparison of 74-MHz interplanetary scintillation and IMP 7 observations of the solar wind during 1973. J. Geophys. Res. 83(A7), 3337. doi: 10.1029/JA083iA07p03337 .

    Article  ADS  Google Scholar 

  • Frank, L.A., Ackerson, K.L., Paterson, W.R., Lee, J.A., English, M.R., Pickett, G.L.: 1994, The comprehensive plasma instrumentation (CPI) for the GEOTAIL spacecraft. J. Geomagn. Geoelectr. 46, 23.

    Article  Google Scholar 

  • Gapper, G.R., Hewish, A., Purvis, A., Duffett-Smith, P.J.: 1982, Observing interplanetary disturbances from the ground. Nature 296, 633. doi: 10.1038/296633a0 .

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Lara, A., Lepping, R.P., Kaiser, M.L., Berdichevsky, D., St. Cyr, O.C.: 2000, Interplanetary acceleration of coronal mass ejections. Geophys. Res. Lett. 27(2), 145. doi: 10.1029/1999GL003639 .

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Lara, A., Yashiro, S., Kaiser, M.L., Howard, R.A.: 2001, Predicting the 1-AU arrival times of coronal mass ejections. J. Geophys. Res. 106(A12), 29207. doi: 10.1029/2001JA000177 .

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Yashiro, S., Liu, Y., Michalek, G., Vourlidas, A., Kaiser, M.L., Howard, R.A.: 2005, Coronal mass ejections and other extreme characteristics of the 2003 October – November solar eruptions. J. Geophys. Res. 110, A09S15. doi: 10.1029/2004JA010958 .

    Article  Google Scholar 

  • Gopalswamy, N., Yashiro, S., Micharek, G., Stenborg, G., Vouridas, A., Freeland, S., Howard, R.: 2009, The SOHO/LASCO CME catalog. Earth Moon Planets 104, 295. doi: 10.1007/s11038-008-9282-7 .

    Article  ADS  Google Scholar 

  • Gosling, J.T., Hildner, E., MacQueen, R.M., Munro, R.H., Poland, A.I., Ross, C.L.: 1974, Mass ejections from the Sun: a view from Skylab. J. Geophys. Res. 79(31), 4581. doi: 10.1029/JA079i031p04581 .

    Article  ADS  Google Scholar 

  • Gosling, J.T., Bame, S.T., McComas, D.J., Phillips, J.L.: 1990, Coronal mass ejections and large geomagnetic storms. Geophys. Res. Lett. 17(7), 901. doi: 10.1029/GL017i007p00901 .

    Article  ADS  Google Scholar 

  • Hewish, A., Bravo, S.: 1986, The sources of large-scale heliospheric disturbances. Solar Phys. 106, 185. doi: 10.1007/BF00161362 .

    Article  ADS  Google Scholar 

  • Hewish, A., Scott, P.F., Wills, D.: 1964, Interplanetary scintillation of small diameter radio sources. Nature 203(4951), 1214. doi: 10.1038/2031214a0 .

    Article  ADS  Google Scholar 

  • Jackson, B.V., Hick, P.P.: 2002, Corotational tomography of heliospheric features using global Thomson scattering data. Solar Phys. 211, 345. doi: 10.1023/A:1022409530466 .

    Article  ADS  Google Scholar 

  • Jackson, B.V., Hick, P.P., Buffington, A., Bisi, M.M., Clover, J.M., Tokumaru, M., Kojima, M., Fujiki, K.: 2011, Three-dimensional reconstruction of heliospheric structure using iterative tomography: a review. J. Atmos. Solar-Terr. Phys. 73, 1214. doi: 10.1016/j.jastp.2010.10.007 .

    Article  ADS  Google Scholar 

  • Kojima, M., Kakinuma, T.: 1990, Solar cycle dependence of global distribution of solar wind speed. Space Sci. Rev. 53, 173. doi: 10.1007/BF00212754 .

    Article  ADS  Google Scholar 

  • Lindsay, G.M., Luhmann, J.G., Russell, C.T., Gosling, J.T.: 1999, Relationships between coronal mass ejection speeds from coronagraph images and interplanetary characteristics of associated interplanetary coronal mass ejections. J. Geophys. Res. 104(A6), 12515. doi: 10.1029/1999JA900051 .

    Article  ADS  Google Scholar 

  • Maloney, S.A., Gallagher, P.T.: 2010, Solar wind drag and the kinematics of interplanetary coronal mass ejections. Astrophys. J. Lett. 724, L127. doi: 10.1088/2041-8205/724/2/L127 .

    Article  ADS  Google Scholar 

  • Manoharan, P.K.: 2006, Evolution of coronal mass ejections in the inner heliosphere: a study using white-light and scintillation images. Solar Phys. 235, 345. doi: 10.1007/s11207-006-0100-y .

    Article  ADS  Google Scholar 

  • Manoharan, P.K.: 2010, Ooty interplanetary scintillation – remote-sensing observations and analysis of coronal mass ejections in the heliosphere. Solar Phys. 265, 137. doi: 10.1007/s11207-010-9593-5 .

    Article  ADS  Google Scholar 

  • Manoharan, P.K., Kojima, M., Gopalswamy, N., Kondo, T., Smith, Z.: 2000, Radial evolution and turbulence characteristics of a coronal mass ejection. Astrophys. J. 530, 1061. doi: 10.1086/308378 .

    Article  ADS  Google Scholar 

  • McComas, D.J., Bame, S.J., Barker, P., Feldman, W.C., Phillips, J.L., Riley, P., Griffee, J.W.: 1998, Solar wind electron proton alpha monitor (SWEPAM) for the Advanced Composition Explorer. Space Sci. Rev. 86, 563. doi: 10.1023/A:1005040232597 .

    Article  ADS  Google Scholar 

  • Michalek, G., Gopalswamy, N., Yashiro, S.: 2003, A new method for estimating widths, velocities, and source location of halo coronal mass ejections. Astrophys. J. 584, 472. doi: 10.1086/345526 .

    Article  ADS  Google Scholar 

  • Neugebauer, M.: 1975, Large-scale and solar-cycle variations of the solar wind. Space Sci. Rev. 17, 221. doi: 10.1007/BF00718575 .

    Article  ADS  Google Scholar 

  • Ogilvie, K.W., Chornay, D.J., Fritzenreiter, R.J., Hunsaker, F., Keller, J., Lobell, J., Miller, G., Scudder, J.D., Sittler, E.C. Jr., Torbert, R.B., et al.: 1995, SWE, a comprehensive plasma instrument for the Wind spacecraft. Space Sci. Rev. 71, 55. doi: 10.1007/BF00751326 .

    Article  ADS  Google Scholar 

  • Ontiveros, V., Vourlidas, A.: 2009, Quantitative measurements of coronal mass ejection-driven shocks from LASCO observations. Astrophys. J. 693, 267. doi: 10.1088/0004-637X/693/1/267 .

    Article  ADS  Google Scholar 

  • Reiner, M.J., Kaiser, M.L., Bougeret, J.L.: 2007, Coronal and interplanetary propagation of CME/Shocks from radio, in situ and white-light observations. Astrophys. J. 663, 1369. doi: 10.1086/518683 .

    Article  ADS  Google Scholar 

  • Richardson, I.G., Cane, H.V.: 2010, Near-Earth interplanetary coronal mass ejections during solar cycle 23 (1996 – 2009): catalog and summary of properties. Solar Phys. 264, 189. doi: 10.1007/s11207-010-9568-6 .

    Article  ADS  Google Scholar 

  • Schwenn, R.: 1983, Direct correlations between coronal transients and interplanetary disturbances. Space Sci. Rev. 34, 85. doi: 10.1007/BF00221199 .

    Article  ADS  Google Scholar 

  • Schwenn, R., Mühlhäuser, K.H., Marsch, E.: 1981, In: Rosenbauer, H. (ed.) Solar Wind Four, Max-Planck-Inst f. Aeronomie, Katlenburg-Lindau, 126.

    Google Scholar 

  • Stone, E.C., Frandsen, A.M., Mewaldt, R.A., Christian, E.R., Margolies, D., Ormes, J.F., Snow, F.: 1998, The advanced composition explorer. Space Sci. Rev. 86, 1. doi: 10.1023/A:1005082526237 .

    Article  ADS  Google Scholar 

  • Tappin, S.J.: 2006, The deceleration of an interplanetary transient from the Sun to 5 AU. Solar Phys. 233, 233. doi: 10.1007/s11207-006-2065-2 .

    Article  ADS  Google Scholar 

  • Tappin, S.J., Hewish, A., Gapper, G.R.: 1983, Tracking a major interplanetary disturbance. Planet. Space Sci. 31(10), 1171. doi: 10.1016/0032-0633(83)90106-X .

    Article  ADS  Google Scholar 

  • Temmer, M., Rollet, T., Möstl, C., Veronig, A., Vršnak, B., Odstrčil, D.: 2011, Influence of the ambient solar wind flow on the propagation behavior of interplanetary coronal mass ejections. Astrophys. J. 743, 101. doi: 10.1088/0004-637X/743/2/101 .

    Article  ADS  Google Scholar 

  • Tokumaru, M., Kojima, M., Fujiki, K., Yokobe, A.: 2000a, Three-dimensional propagation of interplanetary disturbances detected with radio scintillation measurements at 327 MHz. J. Geophys. Res. 105(A5), 10435. doi: 10.1029/2000JA900001 .

    Article  ADS  Google Scholar 

  • Tokumaru, M., Kojima, M., Ishida, Y., Ohmi, T.: 2000b, Large-scale structure of solar wind turbulence near solar activity minimum. Adv. Space Res. 25(9), 1943. doi: 10.1016/S0273-1177(99)00630-4 .

    Article  ADS  Google Scholar 

  • Tokumaru, M., Kojima, M., Fujiki, K., Yamashita, M., Yokobe, A.: 2003, Toroidal-shaped interplanetary disturbance associated with the halo coronal mass ejection event on 14 July 2000. J. Geophys. Res. 108(A5), 1220. doi: 10.1029/2002JA009574 .

    Article  Google Scholar 

  • Tokumaru, M., Kojima, M., Fujiki, K., Yamashita, M.: 2006, Tracking heliospheric disturbances by interplanetary scintillation. Nonlinear Process. Geophys. 13, 329.

    Article  ADS  Google Scholar 

  • Tsurutani, B.T., Gonzalez, W.D., Tang, F., Akasofu, S., Smith, E.J.: 1988, Origin of interplanetary southward magnetic fields responsible for major magnetic storms near solar maximum (1978 – 1979). J. Geophys. Res. 93(48), 8519. doi: 10.1029/JA093iA08p08519 .

    Article  ADS  Google Scholar 

  • Vlasov, V.I.: 1992, In: Marsch, E., Schwenn, R. (eds.) Solar Wind Seven, Proc. 3rd COSPAR Symp., Pergamon, New York, 301.

    Chapter  Google Scholar 

  • Vourlidas, A., Lynch, B.J., Howard, R.A., Li, Y.: 2012, How many CMEs have flux rope? Deciphering the signatures of shocks, flux ropes, and prominences in coronagraph observations of CMEs. Solar Phys. doi: 10.1007/s11207-012-0084-8 .

    Google Scholar 

  • Vršnak, B., Gopalswamy, N.: 2002, Influence of the aerodynamic drag on the motion of interplanetary ejecta. J. Geophys. Res. 107(A2), 1019. doi: 10.1029/2001JA000120 .

    Article  Google Scholar 

  • Watanabe, T., Kakimuma, T.: 1986, Three-dimensional properties of interplanetary disturbances in 1978 – 1981. Astrophys. Space Sci. 118, 153. doi: 10.1007/BF00651120 .

    Article  ADS  Google Scholar 

  • Watanabe, T., Schwenn, R.: 1989, Large-scale propagation properties of interplanetary disturbances revealed from IPS and spacecraft observations. Space Sci. Rev. 51, 147. doi: 10.1007/BF00226272 .

    Article  ADS  Google Scholar 

  • Woo, R.: 1988, A synoptic study of Doppler scintillation transients in the solar wind. J. Geophys. Res. 93(A5), 3919. doi: 10.1029/JA093iA05p03919 .

    Article  ADS  Google Scholar 

  • Yashiro, S., Gopalswamy, N., Michalek, G., St. Cyr, O.C., Plunkett, S.P., Rich, N.B., Howard, R.A.: 2004, A catalog of white light coronal mass ejections observed by the SOHO spacecraft. J. Geophys. Res. 109, A07105. doi: 10.1029/2003JA010282 .

    Article  ADS  Google Scholar 

  • Young, A.T.: 1971, Interpretation of interplanetary scintillations. Astrophys. J. 168, 543. doi: 10.1086/151108 .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The IPS observations were carried out under the solar-wind program of the Solar-Terrestrial Environment Laboratory (STEL) of Nagoya University. We acknowledge use of the SOHO/LASCO CME catalog; this CME catalog is generated and maintained at the CDAW Data Center by NASA and the Catholic University of America in cooperation with the Naval Research Laboratory. SOHO is a project of international cooperation between ESA and NASA. We thank NASA/GSFC’s Space Physics Data Facility for use of the OMNIWeb service and OMNI data. We thank the IDL Astronomy User’s Library for the use of IDL software. We acknowledge use of the comprehensive ICME catalog compiled by I.G. Richardson and H.V. Cane. We also thank B.V. Jackson for useful help and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Iju.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iju, T., Tokumaru, M. & Fujiki, K. Radial Speed Evolution of Interplanetary Coronal Mass Ejections During Solar Cycle 23. Sol Phys 288, 331–353 (2013). https://doi.org/10.1007/s11207-013-0297-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-013-0297-5

Keywords

Navigation