Skip to main content
Log in

A Numerical Study of the Response of the Coronal Magnetic Field to Flux Emergence

  • ADVANCES IN EUROPEAN SOLAR PHYSICS
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Large-scale solar eruptions, known as coronal mass ejections (CMEs), are regarded as the main drivers of space weather. The exact trigger mechanism of these violent events is still not completely clear; however, the solar magnetic field indisputably plays a crucial role in the onset of CMEs. The strength and morphology of the solar magnetic field are expected to have a decisive effect on CME properties, such as size and speed. This study aims to investigate the evolution of a magnetic configuration when driven by the emergence of new magnetic flux in order to get a better insight into the onset of CMEs and their magnetic structure. The three-dimensional, time-dependent equations for ideal magnetohydrodynamics are numerically solved on a spherical mesh. New flux emergence in a bipolar active region causes destabilisation of the initial stationary structure, finally resulting in an eruption. The initial magnetic topology is suitable for the ‘breakout’ CME scenario to work. Although no magnetic flux rope structure is present in the initial condition, highly twisted magnetic field lines are formed during the evolution of the system as a result of internal reconnection due to the interaction of the active region magnetic field with the ambient field. The magnetic energy built up in the system and the final speed of the CME depend on the strength of the overlying magnetic field, the flux emergence rate, and the total amount of emerged flux. The interaction with the global coronal field makes the eruption a large-scale event, involving distant parts of the solar surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  • Antiochos, S.K., DeVore, C.R., Klimchuk, J.A.: 1999, A model for solar coronal mass ejections. Astrophys. J. 510, 485 – 493.

    Article  ADS  Google Scholar 

  • Cohen, O., Attrill, G.D.R., Manchester, W.B. IV, Wills-Davey, M.J.: 2009, Numerical simulation of an EUV coronal wave based on the 2009 February 13 CME event observed by STEREO. Astrophys. J. 705.

  • Cohen, O., Attrill, G.D.R., Schwadron, N.A., Crooker, N.U., Owens, M.J., Downs, C., Gombosi, T.I.: 2010, Numerical simulation of the 12 May 1997 CME event: The role of magnetic reconnection. J. Geophys. Res. 115(A14), 10104.

    Article  Google Scholar 

  • Dere, K.P.: 1996, The rate of magnetic reconnection observed in the solar atmosphere. Astrophys. J. 472, 864.

    Article  ADS  Google Scholar 

  • DeVore, C.R., Antiochos, S.K.: 2008, Homologous confined filament eruptions via magnetic breakout. Astrophys. J. 680, 740 – 756.

    Article  ADS  Google Scholar 

  • Downs, C., Roussev, I.I., van der Holst, B., Lugaz, N., Sokolov, I.V., Gombosi, T.I.: 2010, Toward a realistic thermodynamic magnetohydrodynamic model of the global solar corona. Astrophys. J. 712, 1219 – 1231.

    Article  ADS  Google Scholar 

  • Downs, C., Roussev, I.I., van der Holst, B., Lugaz, N., Sokolov, I.V., Gombosi, T.I.: 2011, Studying extreme ultraviolet wave transients with a digital laboratory: Direct comparison of extreme ultraviolet wave observations to global magnetohydrodynamic simulations. Astrophys. J. 728, 2.

    Article  ADS  Google Scholar 

  • Evans, C.R., Hawley, J.F.: 1988, Simulation of magnetohydrodynamic flows: A constrained transport method. Astrophys. J. 332, 659 – 677.

    Article  ADS  Google Scholar 

  • Forbes, T.G.: 2000, A review on the genesis of coronal mass ejections. J. Geophys. Res. 105(A10), 23153 – 23165.

    Article  ADS  Google Scholar 

  • Forbes, T.G.: 2010, Models of coronal mass ejections and flares. In: Schrijver, C.J., Siscoe, G.L. (eds.) Heliophysics – Space Storms and Radiation: Causes and Effects, Cambridge University Press, Cambridge, 159 – 191. Chapter 6.

    Google Scholar 

  • Gopalswamy, N., Mikić, Z., Maia, D., Alexander, D., Cremades, H., Kaufmann, P., Tripathi, D., Wang, Y.-M.: 2006, The pre-CME Sun. Space Sci. Rev. 123, 303 – 339.

    Article  ADS  Google Scholar 

  • Groth, C.P.T., De Zeeuw, D.L., Gombosi, T.I., Powell, K.G.: 2000, Global three-dimensional MHD simulation of a space weather event: CME formation, interplanetary propagation, and interaction with the magnetosphere. J. Geophys. Res. 105, 25053 – 25078.

    Article  ADS  Google Scholar 

  • Hayashi, K.: 2005, Magnetohydrodynamic simulations of the solar corona and solar wind using a boundary treatment to limit solar wind mass flux. Astrophys. J. Suppl. 161, 480 – 494.

    Article  ADS  Google Scholar 

  • Hu, Y.Q., Feng, X.S., Wu, S.T., Song, W.B.: 2008, Three-dimensional MHD modeling of the global corona throughout solar cycle 23. J. Geophys. Res. 113(A12), 3106.

    Article  Google Scholar 

  • Jacobs, C., Poedts, S.: 2011, Models for coronal mass ejections. J. Atmos. Solar-Terr. Phys. 73, 1148 – 1155.

    Article  ADS  Google Scholar 

  • Jacobs, C., Poedts, S., van der Holst, B.: 2006, The effect of the solar wind on CME triggering by magnetic foot point shearing. Astron. Astrophys. 450, 793 – 803.

    Article  ADS  Google Scholar 

  • Jacobs, C., Roussev, I.I., Lugaz, N., Poedts, S.: 2009, The internal structure of coronal mass ejections: Are all regular magnetic clouds flux ropes? Astrophys. J. Lett. 695, L171 – L175.

    Article  ADS  Google Scholar 

  • Klimchuk, J.A.: 2001, Theory of coronal mass ejections. In: Song, P., Singer, H.J., Siscoe, G.L. (eds.) Space Weather, Geophys. Monogr. Ser. 125, AGU, Washington, 143.

    Chapter  Google Scholar 

  • Koutchmy, S., Bocchialini, K.: 1998, White-light polar plumes from solar eclipses. In: Guyenne, T.-D. (ed.) Solar Jets and Coronal Plumes SP-421, ESA, Noordwijk, 51.

    Google Scholar 

  • Lin, H., Penn, M.J., Tomczyk, S.: 2000, A new precise measurement of the coronal magnetic field strength. Astrophys. J. Lett. 541, L83 – L86.

    Article  ADS  Google Scholar 

  • Lionello, R., Linker, J.A., Mikić, Z.: 2009, Multispectral emission of the Sun during the first whole Sun month: Magnetohydrodynamic simulations. Astrophys. J. 690, 902 – 912.

    Article  ADS  Google Scholar 

  • Lugaz, N., Downs, C., Shibata, K., Roussev, I.I., Asai, A., Gombosi, T.I.: 2011, Numerical investigation of a coronal mass ejection from an anemone active region: Reconnection and deflection of the 2005 August 22 eruption. Astrophys. J. 738.

  • Lynch, B.J., Antiochos, S.K., DeVore, C.R., Luhmann, J.G., Zurbuchen, T.H.: 2008, Topological evolution of a fast magnetic breakout CME in three dimensions. Astrophys. J. 683, 1192 – 1206.

    Article  ADS  Google Scholar 

  • Lynch, B.J., Antiochos, S.K., Li, Y., Luhmann, J.G., DeVore, C.R.: 2009, Rotation of coronal mass ejections during eruption. Astrophys. J. 697, 1918 – 1927.

    Article  ADS  Google Scholar 

  • Nakamizo, A., Tanaka, T., Kubo, Y., Kamei, S., Shimazu, H., Shinagawa, H.: 2009, Development of the 3-D MHD model of the solar corona-solar wind combining system. J. Geophys. Res. 114(A13), 7109.

    Article  Google Scholar 

  • Romano, P., Zuccarello, F.: 2007, Photospheric magnetic evolution of super active regions. Astron. Astrophys. 474, 633 – 637.

    Article  ADS  Google Scholar 

  • Roussev, I.I., Sokolov, I.V.: 2006, Models of solar eruptions: Recent advances from theory and simulations. In: Gopalswamy, N., Mewaldt, R., Torsti, J. (eds.) Solar Eruptions and Energetic Particles, Geophys. Monogr. Ser. 165, AGU, Washington, 89 – 102.

    Chapter  Google Scholar 

  • Roussev, I.I., Lugaz, N., Sokolov, I.V.: 2007, New physical insight on the changes in the magnetic field topology during coronal mass ejections: case studies for the 2002 April 21 and 2002 August 24 events. Astrophys. J. Lett. 668, L87 – L90.

    Article  ADS  Google Scholar 

  • Schrijver, C.J.: 2009, Driving major solar flares and eruptions: A review. Adv. Space Res. 43, 739 – 755.

    Article  ADS  Google Scholar 

  • Soenen, A., Zuccarello, F.P., Jacobs, C., Poedts, S., Keppens, R., van der Holst, B.: 2009, Numerical simulations of homologous coronal mass ejections in the solar wind. Astron. Astrophys. 501, 1123 – 1130.

    Article  ADS  Google Scholar 

  • Török, T., Kliem, B.: 2005, Confined and ejective eruptions of kink-unstable flux ropes. Astrophys. J. Lett. 630, L97 – L100.

    Article  ADS  Google Scholar 

  • Török, T., Panasenco, O., Titov, V.S., Mikić, Z., Reeves, K.K., Velli, M., Linker, J.A., De Toma, G.: 2011, A model for magnetically coupled sympathetic eruptions. Astrophys. J. Lett. 739, L63.

    Article  ADS  Google Scholar 

  • Tóth, G.: 1996, General code for modeling MHD flows on parallel computers: versatile advection code. Astrophys. Lett. Commun. 34, 245.

    ADS  Google Scholar 

  • van der Holst, B., Jacobs, C., Poedts, S.: 2007, Simulation of a breakout coronal mass ejection in the solar wind. Astrophys. J. Lett. 671, L77 – L80.

    Article  ADS  Google Scholar 

  • van der Holst, B., Manchester, W.I., Sokolov, I.V., Toth, G., Gombosi, T.I., DeZeeuw, D., Cohen, O.: 2009, Breakout coronal mass ejection or streamer blowout: The bugle effect. Astrophys. J. 693, 1178 – 1187.

    Article  ADS  Google Scholar 

  • van Driel-Gesztelyi, L., Culhane, J.L.: 2009, Magnetic flux emergence, activity, eruptions and magnetic clouds: Following magnetic field from the sun to the heliosphere. Space Sci. Rev. 144, 351 – 381.

    Article  ADS  Google Scholar 

  • van Driel-Gesztelyi, L., Attrill, G.D.R., Démoulin, P., Mandrini, C.H., Harra, L.K.: 2008, Why are CMEs large-scale coronal events: Nature or nurture? Ann. Geophys. 26, 3077 – 3088.

    Article  ADS  Google Scholar 

  • Zuccarello, F.P., Soenen, A., Poedts, S., Zuccarello, F., Jacobs, C.: 2008, Initiation of coronal mass ejections by magnetic flux emergence in the framework of the breakout model. Astrophys. J. Lett. 689, L157 – L160.

    Article  ADS  Google Scholar 

  • Zuccarello, F.P., Jacobs, C., Soenen, A., Poedts, S., van der Holst, B., Zuccarello, F.: 2009, Modelling the initiation of coronal mass ejections: Magnetic flux emergence versus shearing motions. Astron. Astrophys. 507, 441 – 452.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was funded by projects GOA/2009-009 (K.U.Leuven), G.0729.11 (FWO-Vlaanderen), 3E090665 (FWO-Vlaanderen), and C 90347 (ESA Prodex 9). For the simulations we used the infrastructure of the VSC – Flemish Supercomputer Centre, funded by the Hercules foundation and the Flemish Government – department EWI. We gratefuly thank the anonymous referee for his/her comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Jacobs.

Additional information

Advances in European Solar Physics

Guest Editors: Valery M. Nakariakov, Manolis K. Georgoulis, and Stefaan Poedts

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacobs, C., Poedts, S. A Numerical Study of the Response of the Coronal Magnetic Field to Flux Emergence. Sol Phys 280, 389–405 (2012). https://doi.org/10.1007/s11207-012-9941-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-012-9941-8

Keywords

Navigation