Skip to main content
Log in

Very High-Resolution Solar X-Ray Imaging Using Diffractive Optics

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

This paper describes the development of X-ray diffractive optics for imaging solar flares with better than 0.1 arcsec angular resolution. X-ray images with this resolution of the ≥ 10 MK plasma in solar active regions and solar flares would allow the cross-sectional area of magnetic loops to be resolved and the coronal flare energy release region itself to be probed. The objective of this work is to obtain X-ray images in the iron-line complex at 6.7 keV observed during solar flares with an angular resolution as fine as 0.1 arcsec – over an order of magnitude finer than is now possible. This line emission is from highly ionized iron atoms, primarily Fe xxv, in the hottest flare plasma at temperatures in excess of ≈ 10 MK. It provides information on the flare morphology, the iron abundance, and the distribution of the hot plasma. Studying how this plasma is heated to such high temperatures in such short times during solar flares is of critical importance in understanding these powerful transient events, one of the major objectives of solar physics. We describe the design, fabrication, and testing of phase zone plate X-ray lenses with focal lengths of ≈ 100 m at these energies that would be capable of achieving these objectives. We show how such lenses could be included on a two-spacecraft formation-flying mission with the lenses on the spacecraft closest to the Sun and an X-ray imaging array on the second spacecraft in the focal plane ≈ 100 m away. High-resolution X-ray images could be obtained when the two spacecraft are aligned with the region of interest on the Sun. Requirements and constraints for the control of the two spacecraft are discussed together with the overall feasibility of such a formation-flying mission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  • Aschwanden, M.J.: 2005, Physics of the Solar Corona. An Introduction with Problems and Solutions, Praxis, Chichester, 23.

    Google Scholar 

  • Davila, J.M.: 2011, High-resolution solar imaging with a photon sieve. In: Fineschi, S., Fennelly, J. (eds.) Solar Physics and Space Weather Instrumentation IV., Proc. SPIE 8148, 81040-1 – 81040-11. doi: 10.1117/12.898956 .

    Google Scholar 

  • Dere, K.P., Landi, E., Mason, H.E., Monsignori Fossi, B.C., Young, P.R.: 1997, CHIANTI – an atomic database for emission lines. Astron. Astrophys. Suppl. Ser. 125, 149 – 173. doi: 10.1051/aas:1997368 .

    Article  ADS  Google Scholar 

  • Dere, K.P., Landi, E., Young, P.R., Del Zanna, G., Landini, M., Mason, H.E.: 2009, CHIANTI – an atomic database for emission lines. IX. Ionization rates, recombination rates, ionization equilibria for the elements hydrogen through zinc and updated atomic data. Astron. Astrophys. 498, 915 – 929. doi: 10.1051/0004-6361/200911712 .

    Article  ADS  Google Scholar 

  • di Fabrizio, E., Romanato, F., Gentili, M., Cabrini, S., Kaulich, B., Susini, J., Barrett, R.: 1999, High-efficiency multilevel zone plates for keV X-rays. Nature 401, 895 – 898. doi: 10.1038/44791 .

    Article  ADS  Google Scholar 

  • Farr, T.G., Rosen, P.A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., Alsdorf, D.: 2007, The shuttle radar topography mission. Rev. Geophys. 45, RG2004. doi: 10.1029/2005RG000183 .

    Article  ADS  Google Scholar 

  • Gabriel, A.H.: 1972, Dielectronic satellite spectra for highly-charged helium-like ionlines. Mon. Not. Roy. Astron. Soc. 160, 99 – 119.

    ADS  Google Scholar 

  • Golub, L., Deluca, E., Austin, G., Bookbinder, J., Caldwell, D., Cheimets, P., Cirtain, J., Cosmo, M., Reid, P., Sette, A., Weber, M., Sakao, T., Kano, R., Shibasaki, K., Hara, H., Tsuneta, S., Kumagai, K., Tamura, T., Shimojo, M., McCracken, J., Carpenter, J., Haight, H., Siler, R., Wright, E., Tucker, J., Rutledge, H., Barbera, M., Peres, G., Varisco, S.: 2007, The X-Ray Telescope (XRT) for the Hinode mission. Solar Phys. 243, 63 – 86. doi: 10.1007/s11207-007-0182-1 .

    Article  ADS  Google Scholar 

  • Johnson, L., Young, R., Alhorn, D., Heaton, A., Vansant, T., Campbell, B., Pappa, R., Keats, W., Liewer, P.C., Alexander, D., Ayon, J., Wawrzyniak, G., Burton, R., Carroll, D., Matloff, G., Kezerashvili, R.Y.: 2010, Solar sail propulsion: enabling new capabilities for heliophysics. arXiv: 1012.5250 .

  • Keil, S.L., Rimmele, T.R., Wagner, J., Elmore, D., ATST Team: 2011, ATST: The largest polarimeter. In: Kuhn, J.R., Harrington, D.M., Lin, H., Berdyugina, S.V., Trujillo-Bueno, J., Keil, S.L., Rimmele, T. (eds.) Solar Polarization Workshop 6, ASP Conf. Ser. 437, 319 – 328.

    Google Scholar 

  • Krizmanic, J., Morgan, B., Streitmatter, R., Gehrels, N., Gendreau, K., Arzoumanian, Z., Ghodssi, R., Skinner, G.: 2005, Development of ground-testable phase Fresnel lenses in silicon. Exp. Astron. 20, 299 – 306. doi: 10.1007/s10686-006-9030-9 .

    Article  ADS  Google Scholar 

  • Krizmanic, J., Streitmatter, R., Arzoumanian, Z., Badilita, V., Gendreau, K., Gehrels, N., Ghodssi, R., Morgan, B., Skinner, G.: 2007, Phase Fresnel lens development for X-ray & gamma-ray astronomy. In: NASA Science Technology Conference, http://esto.nasa.gov/conferences/nstc2007/papers/Krizmanic_John_C11P3_NSTC-07-0148.pdf .

    Google Scholar 

  • Lamy, P., Damé, L., Vivès, S., Zhukov, A.: 2010, ASPIICS: A giant coronagraph for the ESA/PROBA-3 formation flying mission. In: Oschmann, J.M. Jr., Clampin, M., MacEwen, H. (eds.) Space Telescopes and Instrumentation 2010: Optical, Infrared, and Millimeter Wave, Proc. SPIE 7731, 773118-1 – 773118-12. doi: 10.1117/12.858247 .

    Google Scholar 

  • Lin, R.P., Dennis, B.R., Hurford, G.J., Smith, D.M., Zehnder, A., Harvey, P.R., Curtis, D.W., Pankow, D., Turin, P., Bester, M., Csillaghy, A., Lewis, M., Madden, N., van Beek, H.F., Appleby, M., Raudorf, T., McTiernan, J., Ramaty, R., Schmahl, E., Schwartz, R., Krucker, S., Abiad, R., Quinn, T., Berg, P., Hashii, M., Sterling, R., Jackson, R., Pratt, R., Campbell, R.D., Malone, D., Landis, D., Barrington-Leigh, C.P., Slassi-Sennou, S., Cork, C., Clark, D., Amato, D., Orwig, L., Boyle, R., Banks, I.S., Shirey, K., Tolbert, A.K., Zarro, D., Snow, F., Thomsen, K., Henneck, R., McHedlishvili, A., Ming, P., Fivian, M., Jordan, J., Wanner, R., Crubb, J., Preble, J., Matranga, M., Benz, A., Hudson, H., Canfield, R.C., Holman, G.D., Crannell, C., Kosugi, T., Emslie, A.G., Vilmer, N., Brown, J.C., Johns-Krull, C., Aschwanden, M., Metcalf, T., Conway, A.: 2002, The Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI). Solar Phys. 210, 3 – 32. doi: 10.1023/A:1022428818870 .

    Article  ADS  Google Scholar 

  • Phillips, K.J.H.: 2004, The solar flare 3.8 – 10 keV X-ray spectrum. Astrophys. J. 605, 921 – 930. doi: 10.1086/382523 .

    Article  ADS  Google Scholar 

  • Phillips, K.J.H.: 2008, Highly ionized Fe X-ray lines at energies 7.7 – 8.6 keV. Astron. Astrophys. 490, 823 – 828. doi: 10.1051/0004-6361:200810791 .

    Article  ADS  Google Scholar 

  • Skinner, G.K.: 2001, Diffractive/refractive optics for high energy astronomy. I. Gamma-ray phase Fresnel lenses. Astron. Astrophys. 375, 691 – 700. doi: 10.1051/0004-6361:20010745 .

    Article  ADS  Google Scholar 

  • Skinner, G.K.: 2009, X-ray and gamma-ray focusing and interferometry. In: O’Dell, S., Pareschi, G. (eds.) Optics for EUV, X-Ray, and Gamma-Ray Astronomy IV., Proc. SPIE 7437, 1 –11. doi: 10.1117/12.826853 .

    Google Scholar 

  • Skinner, G.K.: 2010, Diffractive X-ray telescopes. X-ray Opt. Instrum. 2010, 743485. doi: 10.1155/2010/743485 .

    Google Scholar 

  • Vives, S., Damé, L., Lamy, P., Antonopoulos, A., Bon, W., Capobianco, G., Crescenzio, G., da Deppo, V., Ellouzi, M., Garcia, J., Guillon, C., Mazzoli, A., Soilly, T., Stathopoulos, F., Tsiganos, C.: 2010, Demonstrator of the formation flying solar coronagraph ASPIICS/PROBA-3. In: Oschmann, J.J.M., Clampin, M., MacEwen, H. (eds.) Space Telescopes and Instrumentation 2010: Optical, Infrared, and Millimeter Wave, Proc. SPIE 7731, 773147-1 – 773147-10. doi: 10.1117/12.857561 .

    Google Scholar 

  • Weber, M., Deluca, E.E., Golub, L., Cirtain, J., Kano, R., Sakao, T., Shibasaki, K., Narukage, N.: 2007, An on-orbit determination of the on-axis point spread function of the Hinode X-ray telescope. Publ. Astron. Soc. Japan 59, S853 – S855.

    ADS  Google Scholar 

  • Young, M.: 1972, Zone plates and their aberrations. J. Opt. Soc. Am. 62, 972 – 976.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank John Krizmanic and Keith Gendreau for supporting the lens design and testing effort, Kenneth Phillips for providing the spectra shown in Figure 1 and for help with the solar objectives, and Amil Patel, Gang Hu, and Thitima Suwannasiri for their work fabricating the lenses in Goddard’s Detector Development Lab. This project was supported with funding from the Goddard Internal Research and Development (IRAD) program. CHIANTI is a collaborative project involving George Mason University, the University of Michigan (USA), and the University of Cambridge (UK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. R. Dennis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dennis, B.R., Skinner, G.K., Li, M.J. et al. Very High-Resolution Solar X-Ray Imaging Using Diffractive Optics. Sol Phys 279, 573–588 (2012). https://doi.org/10.1007/s11207-012-0016-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-012-0016-7

Keywords

Navigation