Skip to main content
Log in

Comparison of Observations at ACE and Ulysses with Enlil Model Results: Stream Interaction Regions During Carrington Rotations 2016 – 2018

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

During the latitudinal alignment in 2004, ACE and Ulysses encountered two stream interaction regions (SIRs) each Carrington rotation from 2016 to 2018, at 1 and 5.4 AU, respectively. More SIR-driven shocks were observed at 5.4 AU than at 1 AU. Three small SIRs at 1 AU merged to form a strong SIR at 5.4 AU. We compare the Enlil model results with spacecraft observations from four aspects: i) the accuracy of the latest versions of models (WSA v2.2 and Enlil v2.7) vs. old versions (WSA v1.6 and Enlil v2.6), ii) the sensitivity to different solar magnetograms (MWO vs. NSO), iii) the sensitivity to different coronal models (WSA vs. MAS), iv) the predictive capability at 1 AU vs. 5.4 AU. We find the models can capture field sector boundaries with some time offset. Although the new versions have improved the SIR timing prediction, the time offset can be up to two days at 1 AU and four days at 5.4 AU. The models cannot capture some small-scale structures, including shocks and small SIRs at 1 AU. For SIRs, the temperature and total pressure are often underestimated, while the density compression is overestimated. For slow wind, the density is usually overestimated, while the temperature, magnetic field, and total pressure are often underestimated. The new versions have improved the prediction of the speed and density, but they need more robust scaling factors for magnetic field. The Enlil model results are very sensitive to different solar magnetograms and coronal models. It is hard to determine which magnetogram-coronal model combination is superior to others. Higher-resolution solar and coronal observations, a mission closer to the Sun, together with simulations of greater resolution and added physics, are ways to make progress for the solar wind modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altschuler, M.A., Newkirk, G. Jr.: 1969, Magnetic fields and the structure of the solar corona. Solar Phys. 9, 131.

    Article  ADS  Google Scholar 

  • Arge, C.N., Pizzo, V.J.: 2000, Improvement in the prediction of solar wind conditions using real-time solar magnetic field updates. J. Geophys. Res. 105, 10465.

    Article  ADS  Google Scholar 

  • Arge, C.N., Odstrcil, D., Pizzo, V.J., Mayer, L.: 2002, Improved method for specifying solar wind speed near the Sun. In: Velli, M., Bruno, R. (eds.) Solar Wind Ten, AIP Conf. Proc. 679, 190.

    Google Scholar 

  • Arge, C.N., Luhmann, J.G., Odstrcil, D., Schrijver, C.J., Li, Y.: 2004, Stream structure and coronal sources of the solar wind during the May 12th, 1997 CME. J. Atmos. Solar-Terr. Phys. 66, 1295.

    Article  ADS  Google Scholar 

  • Balogh, A., Beek, T.J., Forsyth, R.J., Hedgecock, P.C., Marquedant, R.J., Smith, E.J., Southwood, D.J., Tsurutani, B.T.: 1992, The magnetic field investigation on the Ulysses mission – Instrumentation and preliminary scientific results. Astron. Astrophys. Suppl. 92, 221.

    ADS  Google Scholar 

  • Bame, S.J., McComas, D.J., Barraclough, B.L., Phillips, J.L., Sofaly, K.J., Chavez, J.C., Goldstein, B.E., Sakurai, R.K.: 1992, The Ulysses solar wind plasma experiment. Astron. Astrophys. Suppl. 92, 237.

    ADS  Google Scholar 

  • Berdichevsky, D., Geiss, J., Gloeckler, G., Mall, U.: 1997, Excess heating of He2+ and O6+ relative to H+ downstream of interplanetary shocks. J. Geophys. Res. 102, 2623.

    Article  ADS  Google Scholar 

  • Cranmer, S.R.: 2000, Ion cyclotron wave dissipation in the solar corona: The summed effect of more than 2000 ion species. Astrophys. J. 532, 1197.

    Article  ADS  Google Scholar 

  • Cranmer, S.R.: 2004, Coronal heating versus solar wind acceleration. In: Walsh, R.W., Ireland, J., Danesy, D., Fleck, B. (eds.) Proc. SOHO-15 Workshop – Coronal Heating SP-575, ESA, Noordwijk, 154.

    Google Scholar 

  • Dmitruk, P., Matthaeus, W.H., Seenu, N.: 2004, Test particle energization by current sheets and nonuniform fields in magnetohydrodynamic turbulence. Astrophys. J. 617, 667.

    Article  ADS  Google Scholar 

  • Dmitruk, P., Matthaeus, W.H., Milano, L.J., Oughton, S., Zank, G.P., Mullan, D.J.: 2002, Coronal heating distribution due to low-frequency, wave-driven turbulence. Astrophys. J. 575, 571.

    Article  ADS  Google Scholar 

  • Du, D., Wang, C., Hu, Q.: 2007, Propagation and evolution of a magnetic cloud from ACE to Ulysses. J. Geophys. Res. 112, A09101.

    Article  Google Scholar 

  • Harvey, J.W., Hill, F., Hubbard, R.P., Kennedy, J.R., Leibacher, J.W., Pintar, J.A., et al.: 1996, The Global Oscillation Network Group (GONG) project. Science 272, 1284.

    Article  ADS  Google Scholar 

  • Isenberg, P.A.: 2001, Heating of coronal holes and generation of the solar wind by ion-cyclotron resonance. Space Sci. Rev. 95, 119.

    Article  ADS  Google Scholar 

  • Jian, L.K., Russell, C.T., Luhmann, J.G.: 2011, Comparing solar minimum 23/24 with historical solar wind records at 1 AU. Solar Phys. doi: 10.1007/s11207-011-9737-2 .

    Google Scholar 

  • Jian, L., Russell, C.T., Luhmann, J.G., Skoug, R.M.: 2006, Properties of stream interactions at one AU during 1995 – 2004. Solar Phys. 239, 337.

    Article  ADS  Google Scholar 

  • Jian, L.K., Russell, C.T., Luhmann, J.G., Skoug, R.M., Steinberg, J.T.: 2008a, Stream interactions and interplanetary coronal mass ejections at 0.72 AU. Solar Phys. 249, 85.

    Article  ADS  Google Scholar 

  • Jian, L.K., Russell, C.T., Luhmann, J.G., Skoug, R.M., Steinberg, J.T.: 2008b, Stream interactions and interplanetary coronal mass ejections at 5.3 AU near the solar ecliptic plane. Solar Phys. 250, 375.

    Article  ADS  Google Scholar 

  • Jian, L.K., Russell, C.T., Luhmann, J.G., Skoug, R.M.: 2008c, Evolution of solar wind structures from 0.72 to 1 AU. Adv. Space Res. 41, 259.

    Article  ADS  Google Scholar 

  • Jian, L.K., Russell, C.T., Strangeway, R.J., Leisner, J.S., Galvin, A.B.: 2009, Ion cyclotron waves in the solar wind observed by STEREO near 1 AU. Astrophys. J. Lett. 701, 105.

    Article  ADS  Google Scholar 

  • Jian, L.K., Russell, C.T., Luhmann, J.G., Anderson, B.J., Boardsen, S.A., Strangeway, R.J., Cowee, M.M., Wennmacher, A.: 2010, Observations of ion cyclotron waves in the solar wind near 0.3 AU. J. Geophys. Res. 115, A12115.

    Article  ADS  Google Scholar 

  • Kaiser, M.L., Kucera, T.A., Davila, J.M., St. Cyr, O.C., Guhathakurta, M., Christian, E.: 2008, The STEREO mission: An introduction. Space Sci. Rev. 136, 5.

    Article  ADS  Google Scholar 

  • Lee, C.O., Luhmann, J.G., Odstrcil, D., MacNeice, P.J., de Pater, I., Riley, P., Arge, C.N.: 2009, The solar wind at 1 AU during the declining phase of solar cycle 23: Comparison of 3D numerical model results with observations. Solar Phys. 254, 155.

    Article  ADS  Google Scholar 

  • Lee, L., Wu, B.: 2000, Heating and acceleration of protons and minor ions by fast shocks in the solar corona. Astrophys. J. 535, 1014.

    Article  ADS  Google Scholar 

  • Leibacher, J.W.: 1999, The global oscillation network group (GONG) project. Adv. Space Res. 24, 173.

    Article  ADS  Google Scholar 

  • MacNeice, P.: 2009, Validation of community models: 2. Development of a baseline using the Wang–Sheeley–Arge model. Space Weather 7, S12002.

    Article  ADS  Google Scholar 

  • Marsch, E., Marsden, R., Harrison, R., Wimmer-Schweingruber, R., Fleck, B.: 2005, Solar Orbiter – Mission profile, main goals and present status. Adv. Space Res. 36, 1360.

    Article  ADS  Google Scholar 

  • Matthaeus, W.H., Zank, G.P., Oughton, S., Mullan, D.J., Dmitruk, P.: 1999, Coronal heating by magnetohydrodynamic turbulence driven by reflected low-frequency waves. Astrophys. J. Lett. 523, 93.

    Article  ADS  Google Scholar 

  • McComas, D.J., Bame, S.J., Barker, P., Feldman, W.C., Phillips, J.L., Riley, P., Griffee, J.W.: 1998, Solar wind electron proton alpha monitor (SWEPAM) for the Advanced Composition Explorer. Space Sci. Rev. 86, 563.

    Article  ADS  Google Scholar 

  • McComas, D.J., Velli, M., Lewis, W.S., Acton, L.W., Balat-Pichelin, M., Bothmer, V., et al.: 2005, Probe Solar: Humanity’s first visit to a star. In: Fleck, B., Zurbuchen, T.H., Lacoste, H. (eds.) Proc. Solar Wind 11 / SOHO 16 Workshop – Connecting Sun and Heliosphere SP-592, ESA, Noordwijk, 279.

    Google Scholar 

  • Neugebauer, M., Forsyth, R.J., Galvin, A.B., Harvey, K.L., Hoeksema, J.T., Lazarus, A.J., et al.: 1998, Spatial structure of the solar wind and comparisons with solar data and models. J. Geophys. Res. 103, 14587.

    Article  ADS  Google Scholar 

  • Odstrcil, D.: 2003, Modeling 3D solar wind structure. Adv. Space Res. 32, 497.

    Article  ADS  Google Scholar 

  • Odstrcil, D., Linker, J.A., Lionello, R., Mikić, Z., Riley, P., Pizzo, V.J., Luhmann, J.G.: 2002, Merging of coronal and heliospheric numerical two-dimensional MHD models. J. Geophys. Res. 107, 1493.

    Article  Google Scholar 

  • Owens, M.J., Arge, C.N., Spence, H.E., Pembroke, A.: 2005, An event-based approach to validating solar wind speed predictions: High-speed enhancements in the Wang–Sheeley–Arge model. J. Geophys. Res. 110, A12105.

    Article  ADS  Google Scholar 

  • Owens, M.J., Spence, H.E., McGregor, S., Hughes, W.J., Quinn, J.M., Arge, C.N., Riley, P., Linker, J., Odstrcil, D.: 2008, Metrics for solar wind prediction models: Comparison of empirical, hybrid, and physics-based schemes with 8 years of L1 observations. Space Weather 6, S08001.

    Article  Google Scholar 

  • Parker, E.N.: 1963, Interplanetary Dynamical Processes, Wiley-Interscience, New York.

    MATH  Google Scholar 

  • Pierce, A.K.: 1969, The solar program of the Kitt Peak National Observatory. Solar Phys. 6, 498.

    Article  ADS  Google Scholar 

  • Richardson, I.G., Cliver, E.W., Cane, H.V.: 2000, Sources of geomagnetic activity over the solar cycle: Relative importance of coronal mass ejections, high-speed streams, and slow solar wind. J. Geophys. Res. 105, 18203.

    Article  ADS  Google Scholar 

  • Riley, P., Linker, J.A., Mikić, Z.: 2001, An empirically-driven global MHD model of the solar corona and inner heliosphere. J. Geophys. Res. 106, 15889.

    Article  ADS  Google Scholar 

  • Riley, P., Linker, J.A., Mikić, Z., Lionello, R.: 2001, MHD modeling of the solar corona and inner heliosphere: Comparison with observations. In: Song, P., Singer, H.J., Siscoe, G.L. (eds.) Space Weather, AGU Geophys. Monogr. 125, 159.

    Chapter  Google Scholar 

  • Riley, P., Linker, J.A., Mikić, Z., Lionello, R., Ledvina, S.A., Luhmann, J.G.: 2006, A comparison between global solar magnetohydrodynamic and potential field source surface model results. Astrophys. J. 653, 1510.

    Article  ADS  Google Scholar 

  • Russell, C.T., Jian, L.K., Luhmann, J.G., Zhang, T.L., Neubauer, F.M., Skoug, R.M., Blanco-Cano, X., Omidi, N., Cowee, M.M.: 2008, Mirror mode waves: Messengers from the coronal heating region. Geophys. Res. Lett. 35, L15101.

    Article  ADS  Google Scholar 

  • Schatten, K.H.: 1971, Current sheet magnetic model for the solar corona. Cosm. Electrodyn. 2, 232.

    ADS  Google Scholar 

  • Schatten, K.H., Wilcox, J.M., Ness, N.F.: 1969, A model of interplanetary and coronal magnetic fields. Solar Phys. 6, 442.

    Article  ADS  Google Scholar 

  • Scherrer, P.H., Bogart, R.S., Bush, R.I., Hoeksema, J.T., Kosovichev, A.G., Schou, J., et al.: 1995, The solar oscillation investigation – Michelson Doppler Imager. Solar Phys. 162, 129.

    Article  ADS  Google Scholar 

  • Skoug, R.M., Feldman, W.C., Gosling, J.T., McComas, D.J., Reisenfeld, D.B., Smith, C.W., Lepping, R.P., Balogh, A.: 2000, Radial variation of solar wind electrons inside a magnetic cloud observed at 1 and 5 AU. J. Geophys. Res. 105, 27269.

    Article  ADS  Google Scholar 

  • Smith, E.J., Wolfe, J.H.: 1976, Observations of interaction regions and corotating shocks between one and five AU: Pioneers 10 and 11. J. Geophys. Res. 3, 137.

    Google Scholar 

  • Smith, C.W., L’Heureux, J., Ness, N.F., Acuña, M.H., Burlaga, L.F., Scheifele, J.: 1998, The ACE magnetic field experiment. Space Sci. Rev. 86, 613.

    Article  ADS  Google Scholar 

  • Toth, G., Odstrcil, D.: 1996, Comparison of some flux corrected transport and total variation diminishing numerical schemes for hydrodynamic and magnetohydrodynamic problems. J. Comput. Phys. 128, 82.

    Article  ADS  MATH  Google Scholar 

  • Ulrich, R.K., Evans, S., Boyden, J.E., Webster, L.: 2002, Mount Wilson synoptic magnetic fields: Improved instrumentation, calibration, and analysis applied to the 14 July 2000 flare and to the evolution of the dipole field. Astrophys. J. Suppl. 139, 259.

    Article  ADS  Google Scholar 

  • Wang, Y.M., Sheeley, N.R.: 1990a, Solar wind speed and coronal flux-tube expansion. Astrophys. J. 355, 726.

    Article  ADS  Google Scholar 

  • Wang, Y.M., Sheeley, N.R.: 1990b, Magnetic flux transport and the sunspot-cycle evolution of coronal holes and their wind streams. Astrophys. J. 365, 372.

    Article  ADS  Google Scholar 

  • Wenzel, K.P., Marsden, R.G., Page, D.E., Smith, E.J.: 1989, Ulysses: The first high-latitude heliospheric mission. Adv. Space Res. 9(4), 25.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. K. Jian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jian, L.K., Russell, C.T., Luhmann, J.G. et al. Comparison of Observations at ACE and Ulysses with Enlil Model Results: Stream Interaction Regions During Carrington Rotations 2016 – 2018. Sol Phys 273, 179–203 (2011). https://doi.org/10.1007/s11207-011-9858-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-011-9858-7

Keywords

Navigation