Solar Physics

, Volume 262, Issue 2, pp 461–480 | Cite as

Automatic Detection and Extraction of Coronal Dimmings from SDO/AIA Data

  • G. D. R. AttrillEmail author
  • M. J. Wills-Davey
Solar Image Processing and Analysis


The volume of data anticipated from the Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA) highlights the necessity for the development of automatic-detection methods for various types of solar activity. Initially recognized in the 1970s, it is now well established that coronal dimmings are closely associated with coronal mass ejections (CMEs), and they are particularly noted as a reliable indicator of front-side (halo) CMEs, which can be difficult to detect in white-light coronagraph data.

Existing work clearly demonstrates that several properties derived from the analysis of coronal dimmings can give useful information about the associated CME. The development and implementation of an automated coronal-dimming region detection and extraction algorithm removes visual observer bias, however unintentional, from the determination of physical quantities such as spatial location, area, and volume. This allows for reproducible, quantifiable results to be mined from very large data sets. The information derived may facilitate more reliable early space-weather detection, as well as offering the potential for conducting large-sample studies focused on determining the geo-effectiveness of CMEs, coupled with analysis of their associated coronal dimming signatures.

In this paper we present examples of both simple and complex dimming events extracted using our algorithm, which will be run as a module for the SDO/Computer Vision Centre. Contrasting and well-studied events at both the minimum and maximum of solar cycle 23 are identified in Solar and Heliospheric Observatory/Extreme ultra-violet Imaging Telescope (SOHO/EIT) data. A more recent example extracted from Solar and Terrestrial Relations Observatory/Extreme Ultra-Violet Imager (STEREO/EUVI) data is also presented, demonstrating the potential for the anticipated application to SDO/AIA data. The detection part of our algorithm is based largely on the principle of operation of the NEMO software, namely the detection of significant variation in the statistics of the EUV image pixels (Podladchikova and Berghmans in Solar Phys. 228, 265 – 284, 2005). As well as running on historic data sets, the presented algorithm is capable of detecting and extracting coronal dimmings in near real-time.


Corona, quiet Coronal mass ejections, low coronal signatures Instrumentation and data management 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aschwanden, M.J., Wuelser, J.P., Nitta, N.V., Lemen, J.R., Sandman, A.: 2009, First three-dimensional reconstructions of coronal loops with the STEREO A + B spacecraft. III. Instant stereoscopic tomography of active regions. Astrophys. J. 695, 12 – 29. doi: 10.1088/0004-637X/695/1/12. CrossRefADSGoogle Scholar
  2. Attrill, G., Nakwacki, M.S., Harra, L.K., van Driel-Gesztelyi, L., Mandrini, C.H., Dasso, S., Wang, J.: 2006, Using the evolution of coronal dimming regions to probe the global magnetic field topology. Solar Phys. 238, 117 – 139. doi: 10.1007/s11207-006-0167-5. CrossRefADSGoogle Scholar
  3. Attrill, G.D.R., Harra, L.K., van Driel-Gesztelyi, L., Démoulin, P., Wülser, J.P.: 2007, Coronal “wave”: A signature of the mechanism making CMEs large-scale in the low corona? Astron. Nachr. 328, 760 – 763. doi: 10.1002/asna.200710794. CrossRefADSGoogle Scholar
  4. Attrill, G.D.R., van Driel-Gesztelyi, L., Démoulin, P., Zhukov, A.N., Steed, K., Harra, L.K., Mandrini, C.H., Linker, J.: 2008, The recovery of CME-related dimmings and the ICME’s enduring magnetic connection to the Sun. Solar Phys. 252, 349 – 372. doi: 10.1007/s11207-008-9255-z. CrossRefADSGoogle Scholar
  5. Bewsher, D., Harrison, R.A., Brown, D.S.: 2008, The relationship between EUV dimming and coronal mass ejections. I. Statistical study and probability model. Astron. Astrophys. 478, 897 – 906. doi: 10.1051/0004-6361:20078615. CrossRefADSGoogle Scholar
  6. Chertok, I.M., Grechnev, V.V.: 2003, Large-scale dimmings produced by solar coronal mass ejections according to SOHO/EIT data in four EUV lines. Astron. Rep. 47, 934 – 945. doi: 10.1134/1.1626196. CrossRefADSGoogle Scholar
  7. Chertok, I.M., Grechnev, V.V.: 2005, Large-scale activity in the Bastille Day 2000 solar event. Solar Phys. 229, 95 – 114. doi: 10.1007/s11207-005-3654-1. CrossRefADSGoogle Scholar
  8. Crooker, N.U., Webb, D.F.: 2006, Remote sensing of the solar site of interchange reconnection associated with the May 1997 magnetic cloud. J. Geophys. Res. 111, 8108 – 8114. doi: 10.1029/2006JA011649. CrossRefGoogle Scholar
  9. Delannée, C., Aulanier, G.: 1999, CME associated with transequatorial loops and a bald patch flare. Solar Phys. 190, 107 – 129. CrossRefADSGoogle Scholar
  10. Démoulin, P.: 2008, A review of the quantitative links between CMEs and magnetic clouds. Ann. Geophys. 26, 3113 – 3125. ADSGoogle Scholar
  11. Goff, C.P., van Driel-Gesztelyi, L., Harra, L.K., Matthews, S.A., Mandrini, C.H.: 2005, A slow coronal mass ejection with rising X-ray source. Astron. Astrophys. 434, 761 – 771. doi: 10.1051/0004-6361:20042321. CrossRefADSGoogle Scholar
  12. Harrison, R.A., Lyons, M.: 2000, A spectroscopic study of coronal dimming associated with a coronal mass ejection. Astron. Astrophys. 358, 1097 – 1108. ADSGoogle Scholar
  13. Harrison, R.A., Sawyer, E.C., Carter, M.K., Cruise, A.M., Cutler, R.M., Fludra, A., Hayes, R.W., Kent, B.J., Lang, J., Parker, D.J., Payne, J., Pike, C.D., Peskett, S.C., Richards, A.G., Gulhane, J.L., Norman, K., Breeveld, A.A., Breeveld, E.R., Al Janabi, K.F., McCalden, A.J., Parkinson, J.H., Self, D.G., Thomas, P.D., Poland, A.I., Thomas, R.J., Thompson, W.T., Kjeldseth-Moe, O., Brekke, P., Karud, J., Maltby, P., Aschenbach, B., Bräuninger, H., Kühne, M., Hollandt, J., Siegmund, O.H.W., Huber, M.C.E., Gabriel, A.H., Mason, H.E., Bromage, B.J.I.: 1995, The coronal diagnostic spectrometer for the solar and heliospheric observatory. Solar Phys. 162, 233 – 290. doi: 10.1007/BF00733431. CrossRefADSGoogle Scholar
  14. Howard, R.A., Sheeley, N.R. Jr., Michels, D.J., Koomen, M.J.: 1985, Coronal mass ejections – 1979 – 1981. J. Geophys. Res. 90, 8173 – 8191. CrossRefADSGoogle Scholar
  15. Hudson, H.S., Cliver, E.W.: 2001, Observing coronal mass ejections without coronagraphs. J. Geophys. Res. 106, 25199 – 25214. doi: 10.1029/2000JA004026. ADSGoogle Scholar
  16. Hudson, H.S., Webb, D.F.: 1997, Soft X-Ray Signatures of Coronal Ejections, Geophys. Monogr. Ser., AGU, Washington. Google Scholar
  17. Hudson, H.S., Acton, L.W., Freeland, S.L.: 1996, A long-duration solar flare with mass ejection and global consequences. Astrophys. J. 470, 629 – 635. doi: 10.1086/177894. CrossRefADSGoogle Scholar
  18. Jackson, B.V., Hick, P.P., Buffington, A., Bisi, M.M., Kojima, M., Tokumaru, M.: 2007, Comparison of the extent and mass of CME events in the interplanetary medium using IPS and SMEI Thomson scattering observations. Astron. Astrophys. Trans. 26, 477 – 487. doi: 10.1080/10556790701612221. CrossRefADSGoogle Scholar
  19. Kahler, S.W., Hudson, H.S.: 2001, Origin and development of transient coronal holes. J. Geophys. Res. 106, 29239 – 29248. doi: 10.1029/2001JA000127. CrossRefADSGoogle Scholar
  20. Mandrini, C.H., Pohjolainen, S., Dasso, S., Green, L.M., Démoulin, P., van Driel-Gesztelyi, L., Copperwheat, C., Foley, C.: 2005, Interplanetary flux rope ejected from an X-ray bright point. The smallest magnetic cloud source-region ever observed. Astron. Astrophys. 434, 725 – 740. doi: 10.1051/0004-6361:20041079. CrossRefADSGoogle Scholar
  21. Mandrini, C.H., Demoulin, P., Schmieder, B., Deluca, E.E., Pariat, E., Uddin, W.: 2006, Companion event and precursor of the X17 flare on 28 October 2003. Solar Phys. 238, 293 – 312. doi: 10.1007/s11207-006-0205-3. CrossRefADSGoogle Scholar
  22. Mandrini, C.H., Nakwacki, M.S., Attrill, G., van Driel-Gesztelyi, L., Démoulin, P., Dasso, S., Elliott, H.: 2007, Are CME-related dimmings always a simple signature of interplanetary magnetic cloud footpoints? Solar Phys. 244, 25 – 43. doi: 10.1007/s11207-007-9020-8. CrossRefADSGoogle Scholar
  23. Martens, P.C.H., Davey, A.R., Grigis, P.C., Kasper, J., Korreck, K., Saar, S.H., Su, Y., Savcheva, A., Testa, P., Wills-Davey, M., Bernasconi, P.N., Georgoulis, M.K., Delouille, V.A., Hochedez, J.F., Cirtain, J.W., DeForest, C.E., Angryk, R.A., De Moortel, I., Wiegelmann, T.: 2009, Computer vision for the solar dynamics observatory. Solar Phys., submitted. Google Scholar
  24. Podladchikova, O., Berghmans, D.: 2005, Automated detection of EIT waves and dimmings. Solar Phys. 228, 265 – 284. doi: 10.1007/s11207-005-5373-z. CrossRefADSGoogle Scholar
  25. Qiu, J., Hu, Q., Howard, T.A., Yurchyshyn, V.B.: 2007, On the magnetic flux budget in low-corona magnetic reconnection and interplanetary coronal mass ejections. Astrophys. J. 659, 758 – 772. doi: 10.1086/512060. CrossRefADSGoogle Scholar
  26. Reinard, A.A., Biesecker, D.A.: 2008, Coronal mass ejection-associated coronal dimmings. Astrophys. J. 674, 576 – 585. doi: 10.1086/525269. CrossRefADSGoogle Scholar
  27. Robbrecht, E., Patsourakos, S., Vourlidas, A.: 2009, No trace left behind: STEREO observation of a coronal mass ejection without low coronal signatures. Astrophys. J. 701, 283 – 291. doi: 10.1088/0004-637X/701/1/283. CrossRefADSGoogle Scholar
  28. Rust, D.M.: 1983, Coronal disturbances and their terrestrial effects (Tutorial Lecture). Space Sci. Rev. 34, 21 – 36. CrossRefADSGoogle Scholar
  29. Rust, D.M., Hildner, E.: 1976, Expansion of an X-ray coronal arch into the outer corona. Solar Phys. 48, 381 – 387. CrossRefADSGoogle Scholar
  30. Steed, K., Owen, C.J., Harra, L.K., Green, L.M., Dasso, S., Walsh, A.P., Démoulin, P., van Driel-Gesztelyi, L.: 2008, Locating the solar source of 13 April 2006 magnetic cloud. Ann. Geophys. 26, 3159 – 3168. ADSCrossRefGoogle Scholar
  31. Sterling, A.C., Hudson, H.S.: 1997, YOHKOH SXT observations of X-ray “Dimming” associated with a halo coronal mass ejection. Astrophys. J. Lett. 491, 55 – 58. doi: 10.1086/311043. CrossRefADSGoogle Scholar
  32. Thompson, B.J., Plunkett, S.P., Gurman, J.B., Newmark, J.S., St. Cyr, O.C., Michels, D.J.: 1998, SOHO/EIT observations of an Earth-directed coronal mass ejection on May 12, 1997. Geophys. Res. Lett. 25, 2465 – 2468. doi: 10.1029/98GL50429. CrossRefADSGoogle Scholar
  33. Thompson, B.J., Cliver, E.W., Nitta, N., Delannée, C., Delaboudinière, J.P.: 2000, Coronal dimmings and energetic CMEs in April – May 1998. Geophys. Res. Lett. 27, 1431 – 1434. doi: 10.1029/1999GL003668. CrossRefADSGoogle Scholar
  34. Wang, T., Yan, Y., Wang, J., Kurokawa, H., Shibata, K.: 2002, The large-scale coronal field structure and source region features for a halo coronal mass ejection. Astrophys. J. 572, 580 – 597. doi: 10.1086/340189. CrossRefADSGoogle Scholar
  35. Webb, D.F., Lepping, R.P., Burlaga, L.F., DeForest, C.E., Larson, D.E., Martin, S.F., Plunkett, S.P., Rust, D.M.: 2000, The origin and development of the May 1997 magnetic cloud. J. Geophys. Res. 105, 27251 – 27260. doi: 10.1029/2000JA000021. CrossRefADSGoogle Scholar
  36. Wills-Davey, M.J.: 2006, Tracking large-scale propagating coronal wave fronts (EIT waves) using automated methods. Astrophys. J. 645, 757 – 765. doi: 10.1086/504144. CrossRefADSGoogle Scholar
  37. Zhukov, A.N., Auchère, F.: 2004, On the nature of EIT waves, EUV dimmings and their link to CMEs. Astron. Astrophys. 427, 705 – 716. doi: 10.1051/0004-6361:20040351. CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Harvard-Smithsonian Center for AstrophysicsCambridgeUSA

Personalised recommendations