Skip to main content
Log in

Numerical Magnetohydrodynamic Experiments for Testing the Physical Mechanisms of Coronal Mass Ejections Acceleration

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Analysis of observations from both space-borne (LASCO/SOHO, Skylab and Solar Maximum Mission) and ground-based (Mauna Loa Observatory) instruments show that there are two types of coronal mass ejections (CMEs), fast CMEs and slow CMEs. Fast CMEs start with a high initial speed, which remains more or less constant, while slow CMEs start with a low initial speed, but show a gradual acceleration. To explain the difference between the two types of CMEs, Low and Zhang (2002) proposed that it resulted from a difference in the initial topology of the magnetic fields associated with the underlying quiescent prominences, i.e., a normal prominence configuration will lead to a fast CME, while an inverse quiescent prominence results in a slow CME. In this paper we explore a different scenario to explain the existence of fast and slow CMEs. Postulating only an inverse topology for the quiescent prominences, we show that fast and slow CMEs result from different physical processes responsible for the destabilization of the coronal magnetic field and for the initiation and launching of the CME. We use a 2.5-D, time-dependent streamer and flux-rope magnetohydrodynamic (MHD) model (Wu and Guo, 1997) and investigate three initiation processes, viz. (1) injecting of magnetic flux into the flux-rope, thereby causing an additional Lorentz force that will destabilize the streamer and launch a CME (Wu et al., 1997, 1999); (2) draining of plasma from the flux-rope and triggering a magnetic buoyancy force that causes the flux-rope to lift and launch a CME; and (3) introducing additional heating into the flux-rope, thereby simulating an active-region flux-rope accompanied by a flare to launch a CME. We present 12 numerical tests using these three driving mechanisms either alone or in various combinations. The results show that both fast and slow CMEs can be obtained from an inverse prominence configuration subjected to one or more of these three different initiation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amari, T. J., Luciani, F., Mikić, Z., and Linker, J.: 2000, Astrophys. J. 529, L49.

    Google Scholar 

  • Andrews, M. D. and Howard, R. A.: 2000, Space Sci. Rev. 95, 147.

    Google Scholar 

  • Antiochos, S. K., DeVore, C. R., and Klumchuk, J. A.: 1999, Astrophys. J. 510, 485.

    Google Scholar 

  • Chen, J. and Krall, J.: 2003, J. Geophys. Res., 108, A11, 1410.

    Google Scholar 

  • Chen, J. R., Howard, A. Brueckner, G. E., Santoro, R., Krall, J., Paswaters, S. E., St. Cyr, O. C., Schwenn, R., Lamy, P., and Simnett, G. M.: 1997, Astrophys. J. 490, L 191.

    Google Scholar 

  • Gosling, J. T., Hildner, E., MacQueen, R. M., Muroe, R. H., Poland, A. I., and Ross, C. L.: 1976, Solar Phys. 48, 389.

    Google Scholar 

  • Guo, W. P., Wu, S. T., and Tandberg-Hanssen, E.: 1996, Astrophys. J. 469, 944.

    Google Scholar 

  • Liu, W., Zhao, X. P., Wu, S. T., and Scherrer, P. H.: 2003, Proc. ISCS 2003 Symposium, Solar Variability as an Input to the Earth’s Environment, ESA SP 535, 459.

    Google Scholar 

  • Low, B. C.: 1990, Ann Rev. Astron. Astrophys. 28, 491.

    Google Scholar 

  • Low, B. C. and Zhang, M.: 2002, Astrophys. J. 564, L53.

    Google Scholar 

  • MacQueen, R. M. and Fisher, R. R.: 1983, Solar Phys. 89, 89.

    Google Scholar 

  • Plunkett, S. P., Vourlidas, A., Šimberová, S., Karlický, J., Kotrč, P., Heinzel, P., Kupryakov, Y. A., Guo, W. P., and Wu, S. T.: 2000, Solar Phys. 194, 371.

    Google Scholar 

  • Ramshaw, J.D.: 1983, J. Comput. Phys. 52, 592.

    Google Scholar 

  • Shafranov, V. D.: 1960, Soviet Phys. JETP 37, 775.

    Google Scholar 

  • Sheeley, N. R. Jr., Walters, J. H., Wang, Y.-M., and Howard, R. A.: 1999, J. Geophys. Res. 104, 24739.

    Google Scholar 

  • St. Cyr, O. C., Burkepile, J. T., Hundhausen, A. J., and Lecinski, A. R.: 1999, J. Geophys. Res. 104, 12493.

    Google Scholar 

  • St. Cyr, O. C. et al.: 2000, J. Geophys. Res., 105, 18169.

    Google Scholar 

  • Švestka, Z.: 2000, Space Sci. Rev. 95, 135.

    Google Scholar 

  • Tandberg-Hanssen, E.: 1995, The Nature of Solar Prominence, Kluwer, Dordrecht.

    Google Scholar 

  • Tousey, R.: 1973, Adv. Space Res. 13, 713.

    Google Scholar 

  • Wang, H. M., Spirock, T. J., Qiu, J., Ji, H. S., Yurchyshyn, V., Moon, Y.-J., Denker, C., and Goode, P. R.: 2002, Astrophys. J. 576, 497.

    Google Scholar 

  • Wu, S. T. and Wang, J. F.: 1987, Comp. Method Appl. Mech. Eng. 64, 267.

    Google Scholar 

  • Wu, S. T., Guo, W. P., and Wang, J. F.: 1995, Solar Phys. 157, 325.

    Google Scholar 

  • Wu, S. T., Guo, W. P., and Dryer, M.: 1997, Solar Phys. 170, 265.

    Google Scholar 

  • Wu, S. T., Guo, W. P., et al.: 1997, Solar Phys. 175, 719.

    Google Scholar 

  • Wu, S. T., Guo, W. P. Burlaga, L. F., and Michels, D.: 1999, J. Geophys. Res. 104, A7, 14,789.

    Google Scholar 

  • Wu, S. T., Guo, W. P., Plunkett, S. P. Schmieder, B., and Simnett, G. M.: 2000, J. Atmos. Solar-Terr. Phys. 62, 1489.

    Google Scholar 

  • Zhang, M., Golub, L., DeLuca, E., and Burkepile, J.: 2002, Astrophys. J. 574, L97.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

WU, S.T., Zhang, T.X., Tandberg-Hanssen, E. et al. Numerical Magnetohydrodynamic Experiments for Testing the Physical Mechanisms of Coronal Mass Ejections Acceleration. Sol Phys 225, 157–175 (2004). https://doi.org/10.1007/s11207-004-2568-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-004-2568-7

Keywords

Navigation