Social Indicators Research

, Volume 135, Issue 1, pp 1–14 | Cite as

A Data-Driven Approach to Construct Survey-Based Indicators by Means of Evolutionary Algorithms

  • Oscar ClaveriaEmail author
  • Enric Monte
  • Salvador Torra


In this paper we propose a data-driven approach for the construction of survey-based indicators using large data sets. We make use of agents’ expectations about a wide range of economic variables contained in the World Economic Survey, which is a tendency survey conducted by the Ifo Institute for Economic Research. By means of genetic programming we estimate a symbolic regression that links survey-based expectations to a quantitative variable used as a yardstick, deriving mathematical functional forms that approximate the target variable. We use the evolution of GDP as a target. This set of empirically-generated indicators of economic growth, are used as building blocks to construct an economic indicator. We compare the proposed indicator to the Economic Climate Index, and we evaluate its predictive performance to track the evolution of the GDP in ten European economies. We find that in most countries the proposed indicator outperforms forecasts generated by a benchmark model.


Economic indicators Survey-based indicators Tendency surveys Symbolic regression Evolutionary algorithms Genetic programming 



This paper has been partially financed by the project ECO2016-75805-R of the Spanish Ministry of Economy and Competitiveness. We would like to thank two anonymous referees for their useful comments and suggestions. We also wish to thank Johanna Garnitz and Klaus Wohlrabe at the Ifo Institute for Economic Research in Munich for providing us the data used in the study.


  1. Abberger, K. (2007). Qualitative business surveys and the assessment of employment—A case study for Germany. International Journal of Forecasting, 23(2), 249–258.CrossRefGoogle Scholar
  2. Acosta-González, E., Fernández, F., & Sosvilla, S. (2012). On factors explaining the 2008 financial crisis. Economics Letters, 115(2), 215–217.CrossRefGoogle Scholar
  3. Altug, S., & Çakmakli, C. (2016). Forecasting inflation using survey expectations and target inflation: Evidence from Brazil and Turkey. International Journal of Forecasting, 32(1), 138–153.CrossRefGoogle Scholar
  4. Álvarez-Díaz, M., & Álvarez, A. (2005). Genetic multi-model composite forecast for non-linear prediction of exchange rates. Empirical Economics, 30(3), 643–663.CrossRefGoogle Scholar
  5. Anderson, O. (1951). Konjunkturtest und Statistik. Allgemeines Statistical Archives, 35, 209–220.Google Scholar
  6. Anderson, O. (1952). The Business Test of the IFO-Institute for Economic Research, Munich, and its theoretical model. Revue de l’Institut International de Statistique, 20, 1–17.CrossRefGoogle Scholar
  7. Batchelor, R. A. (1982). Expectations, output and inflation: The European experience. European Economic Review, 17(1), 1–25.CrossRefGoogle Scholar
  8. Batchelor, R. A. (1986). Quantitative v. qualitative measures of inflation expectations. Oxford Bulletin of Economics and Statistics, 48(2), 99–120.CrossRefGoogle Scholar
  9. Batchelor, R., & Dua, P. (1992). Survey expectations in the time series consumption function. The Review of Economics and Statistics, 74(4), 598–606.CrossRefGoogle Scholar
  10. Batchelor, R., & Dua, P. (1998). Improving macro-economic forecasts. International Journal of Forecasting, 14(1), 71–81.CrossRefGoogle Scholar
  11. Batchelor, R., & Orr, A. B. (1988). Inflation expectations revisited. Economica, 55(2019), 317–331.CrossRefGoogle Scholar
  12. Berk, J. M. (1999). Measuring inflation expectations: A survey data approach. Applied Economics, 31(11), 1467–1480.CrossRefGoogle Scholar
  13. Białowolski, P. (2015). Concepts of confidence in tendency survey research: An assessment with multi-group confirmatory factor analysis. Social Indicators Research, 123(1), 281–302.CrossRefGoogle Scholar
  14. Białowolski, P. (2016). The influence of negative response style on survey-based household inflation expectations. Quality & Quantity, 50(2), 509–528.CrossRefGoogle Scholar
  15. Biart, M., & Praet, P. (1987). The contribution of opinion surveys in forecasting aggregate demand in the four main EC countries. Journal of Economic Psychology, 8(4), 409–428.CrossRefGoogle Scholar
  16. Breitung, J., & Schmeling, M. (2013). Quantifying survey expectations: What’s wrong with the probability approach? International Journal of Forecasting, 29(1), 142–154.CrossRefGoogle Scholar
  17. Camacho, M., & Perez-Quiros, G. (2010). Introducing the Euro-Sting: Short-term indicator of Euro Area growth. Journal of Applied Econometrics, 25(4), 663–694.CrossRefGoogle Scholar
  18. Carlson, J. A., & Parkin, M. (1975). Inflation expectations. Economica, 42(166), 123–138.CrossRefGoogle Scholar
  19. CESifo World Economic Survey. (2011). Vol. 10(2), May 2011.Google Scholar
  20. Claveria, O. (2010). Qualitative survey data on expectations. Is there an alternative to the balance statistic? In A. T. Molnar (Ed.), Economic forecasting (pp. 181–190). Hauppauge, NY: Nova Science.Google Scholar
  21. Claveria, O., Monte, E., & Torra, S. (2016). Quantification of survey expectations by means of symbolic regression via genetic programming to estimate economic growth in Central and Eastern European economies. Eastern European Economics, 54(2), 171–189.CrossRefGoogle Scholar
  22. Claveria, O., Pons, E., & Ramos, R. (2007). Business and consumer expectations and macroeconomic forecasts. International Journal of Forecasting, 23(1), 47–69.CrossRefGoogle Scholar
  23. Cotsomitis, J. A., & Kwan, A. C. C. (2006). Can consumer confidence forecast house-hold spending? Evidence from the European Commission business and consumer surveys. Southern Economic Journal, 73(3), 597–610.CrossRefGoogle Scholar
  24. Cramer, N. (1985). A representation for the adaptive generation of simple sequential programs. Proceedings of the International Conference on Genetic Algorithms and their Applications, 24–26 June. Pittsburgh, PA.Google Scholar
  25. Dabhi, V. K., & Chaudhary, S. (2015). Empirical modeling using genetic programming: A survey of issues and approaches. Natural Computing, 14(2), 303–330.CrossRefGoogle Scholar
  26. Dasgupta, S., & Lahiri, K. (1992). A comparative study of alternative methods of quantifying qualitative survey responses using NAPM data. Journal of Business and Economic Statistics, 10(4), 391–400.Google Scholar
  27. Dees, S., & Brinca, P. S. (2013). Consumer confidence as a predictor of consumption spending: Evidence for the United States and the Euro area. International Economics, 134, 1–14.CrossRefGoogle Scholar
  28. Driver, C., & Urga, G. (2004). Transforming Qualitative Survey Data: Performance Comparisons for the UK. Oxford Bulletin of Economics and Statistics, 66(1), 71–89.CrossRefGoogle Scholar
  29. European Commission. (2014). The Joint Harmonised EU Programme of Business and Consumer Surveys. A user manual to the Joint Harmonised EU Programme of Business and Consumers Surveys. Brussels: European Commission, DG Economic and Financial Affairs.Google Scholar
  30. Fogel, D. B. (2006). Evolutionary computation. Toward a new philosophy of machine intelligence (Third Edition). John Wiley & Sons: Hoboken, NJ.Google Scholar
  31. Fortin, F. A., De Rainville, F. M., Gardner, M. A., Parizeau, M., & Gagné, C. (2012). DEAP: Evolutionary algorithms made easy. Journal of Machine Learning Research, 13(1), 2171–2175.Google Scholar
  32. Frale, C., Marcellino, M., Mazzi, G. L., & Proietti, T. (2010). Survey data as coincident or leading indicators. Journal of Forecasting, 29(1–2), 109–131.CrossRefGoogle Scholar
  33. Franses, P. H., Kranendonk, H. C., & Lanser, D. (2011). One model and various experts: Evaluating Dutch macroeconomic forecasts. International Journal of Forecasting, 27(2), 482–495.CrossRefGoogle Scholar
  34. Garnitz, J., Nerb, G., & Wohlrabe, K. (2015). CESifo World Economic Survey—November 2015. CESifo World Economic Survey, 14(4), 1–28.Google Scholar
  35. Gelper, S., & Christophe, C. (2010). On the construction of the European Economic Sentiment Indicator. Oxford Bulletin of Economics and Statistics, 72(1), 47–62.CrossRefGoogle Scholar
  36. Gelper, S., & Croux, C. (2007). The predictive power of the European Economic Sentiment Indicator. KBI Working paper 0707, University of Leuven, Leuven.Google Scholar
  37. Gelper, S., & Croux, C. (2010). On the construction of the European economic sentiment indicator. Oxford Bulletin for Economics and Statistics, 72(1), 47–62.CrossRefGoogle Scholar
  38. Gelper, S., Lemmens, A., & Croux, C. (2007). Consumer sentiment and consumer spending: Decomposing the Granger causal relationship in the time domain. Applied Economics, 39(1), 1–11.CrossRefGoogle Scholar
  39. Ghonghadze, J., & Lux, T. (2012). Modelling the dynamics of EU economic sentiment indicators: An interaction-based approach. Applied Economics, 44(24), 3065–3088.CrossRefGoogle Scholar
  40. Girardi, A. (2014). Expectations and macroeconomic fluctuations in the euro area. Economics Letters, 125(2), 315–318.CrossRefGoogle Scholar
  41. Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning. Reading Boston, MA: Addison-Wesley.Google Scholar
  42. Gong, Y. J., Chen, W. N., Zhan, Z. H., Zhang, J., Li, Y., Zhang, Q., et al. (2015). Distributed evolutionary algorithms and their models: A survey of the stat-of-the-art. Applied Soft Computing, 34, 286–300.CrossRefGoogle Scholar
  43. Graff, M. (2010). Does a multi-sectoral design improve indicator-based forecasts of the GDP growth rate? Evidence from Switzerland. Applied Economics, 42(21), 2759–2781.CrossRefGoogle Scholar
  44. Guizzardi, A., & Stacchini, A. (2015). Real-time forecasting regional tourism with business sentiment surveys. Tourism Management, 47, 213–223.CrossRefGoogle Scholar
  45. Hansson, J., Jansson, P., & Löf, M. (2005). Business survey data: Do they help in forecasting GDP growth? International Journal of Forecasting, 30(1), 65–77.Google Scholar
  46. Henzel, S., & Wollmershäuser, T. (2005). An alternative to the Carlson–Parkin method for the quantification of qualitative inflation expectations: Evidence from the Ifo World Economic Survey. Journal of Business Cycle Measurement and Analysis, 2(3), 321–352.Google Scholar
  47. Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann Arbor, MI: University of Michigan Press.Google Scholar
  48. Hutson, M., Joutz, F., & Stekler, H. (2014). Interpreting and evaluating CESIfo’s World Economic Survey directional forecasts. Economic Modelling, 38, 6–11.CrossRefGoogle Scholar
  49. Hyndman, R. J., & Koehler, A. B. (2006). Another look at measures of forecast accuracy. International Journal of Forecasting, 22(4), 679–688.CrossRefGoogle Scholar
  50. Ilmakunnas, P. (1989). Survey expectations vs. rational expectations in the estimation of a dynamic model: demand for labour in Finish manufacturing. Oxford Bulletin of Economics and Statistics, 51(3), 297–314.CrossRefGoogle Scholar
  51. Ivaldi, M. (1992). Survey evidence on the rationality of expectations. Journal of Applied Econometrics, 7(1), 225–241.CrossRefGoogle Scholar
  52. Jean-Baptiste, F. (2012). Forecasting with the new Keynesian Phillips curve: Evidence from survey data. Economics Letters, 117(3), 811–813.CrossRefGoogle Scholar
  53. Jonsson, T., & Österholm, P. (2011). The forecasting properties of survey-based wage-growth expectations. Economics Letters, 113(3), 276–281.CrossRefGoogle Scholar
  54. Jonsson, T., & Österholm, P. (2012). The properties of survey-based inflation expectations in Sweden. Empirical Economics, 42(1), 79–94.CrossRefGoogle Scholar
  55. Kariya, T. (1990). A generalization of the Carlson–Parkin method for the estimation of expected inflation rate. The Economic Studies Quarterly, 41(2), 155–165.Google Scholar
  56. Kauppi, E., Lassila, J., & Teräsvirta, T. (1996). Short-term forecasting of industrial production with business survey data: Experience from Finland’s great depression 1990–1993. International Journal of Forecasting, 12(3), 373–381.CrossRefGoogle Scholar
  57. Klein, L. R., & Özmucur, S. (2010). The use of consumer and business surveys in forecasting. Economic Modelling, 27(6), 1453–1462.CrossRefGoogle Scholar
  58. Kľúčik, M. (2012). Estimates of foreign trade using genetic programming. In Proceedings of the 46 the scientific meeting of the Italian Statistical Society.Google Scholar
  59. Kotanchek, M. E., Vladislavleva, E. Y., & Smits, G. F. (2010). Symbolic regression via genetic programming as a discovery engine: Insights on outliers and prototypes. In R. Riolo, et al. (Eds.), Genetic programming theory and practice VII, genetic and evolutionary computation (Vol. 8, pp. 55–72). Berlin: Springer Science + Business Media LLC.Google Scholar
  60. Koza, J. R. (1992). Genetic programming: On the programming of computers by means of natural selection. Cambridge, MA: MIT Press.Google Scholar
  61. Kronberger, G., Fink, S., Kommenda, M., & Affenzeller, M. (2011). Macro-economic time series modeling and interaction networks. In C. Di Chio et al. (Eds.), EvoApplications, Part II (pp. 101–110). LNCS 6625.Google Scholar
  62. Kudymowa, E., Plenk, J., & Wohlrabe, K. (2013). Ifo World Economic Survey and the business cycle in selected countries. CESifo Forum, 14(4), 51–57.Google Scholar
  63. Lahiri, K., & Zhao, Y. (2015). Quantifying survey expectations: A critical review and generalization of the Carlson–Parkin method. International Journal of Forecasting, 31(1), 51–62.CrossRefGoogle Scholar
  64. Leduc, S., & Sill, K. (2013). Expectations and economic fluctuations: An analysis using survey data. The Review of Economic and Statistics, 95(4), 1352–1367.CrossRefGoogle Scholar
  65. Lemmens, A., Croux, C., & Dekimpe, M. G. (2005). On the predictive content of production surveys: A pan-European study. International Journal of Forecasting, 21(2), 363–375.CrossRefGoogle Scholar
  66. Lemmens, A., Croux, C., & Dekimpe, M. G. (2008). Measuring and testing Granger causality over the spectrum: An application to European production expectation surveys. International Journal of Forecasting, 24(3), 414–431.CrossRefGoogle Scholar
  67. Löffler, G. (1999). Refining the Carlson–Parkin method. Economics Letters, 64(2), 167–171.CrossRefGoogle Scholar
  68. Lui, S., Mitchell, J., & Weale, M. (2011a). The utility of expectational data: Firm-level evidence using matched qualitative-quantitative UK surveys. International Journal of Forecasting, 27(4), 1128–1146.CrossRefGoogle Scholar
  69. Lui, S., Mitchell, J., & Weale, M. (2011b). Qualitative business surveys: Signal or noise? Journal of The Royal Statistical Society, Series A (Statistics in Society), 174(2), 327–348.CrossRefGoogle Scholar
  70. Łyziak, T., & Mackiewicz-Łyziak, J. (2014). Do consumers in Europe anticipate future inflation? Eastern European Economics, 52(3), 5–32.CrossRefGoogle Scholar
  71. Martinsen, K., Ravazzolo, F., & Wulfsberg, F. (2014). Forecasting macroeconomic variables using disaggregate survey data. International Journal of Forecasting, 30(1), 65–77.CrossRefGoogle Scholar
  72. Mitchell, J. (2002). The use of non-normal distributions in quantifying qualitative survey data on expectations. Economics Letters, 76(1), 101–107.CrossRefGoogle Scholar
  73. Mitchell, J., Smith, R., & Weale, M. (2002). Quantification of qualitative firm-level survey data. Economic Journal, 112(478), 117–135.CrossRefGoogle Scholar
  74. Mitchell, J., Smith, R., & Weale, M. (2005a). Forecasting manufacturing output growth using firm-level survey data. The Manchester School, 73(4), 479–499.CrossRefGoogle Scholar
  75. Mitchell, J., Smith, R., & Weale, M. (2005b). An indicator of monthly GDP and an early estimate of quarterly GDP growth. The Economic Journal, 115(501), F108–F129.CrossRefGoogle Scholar
  76. Mittnik, S., & Zadrozny, P. (2005). Forecasting quarterly German GDP at monthly intervals using monthly IFO business conditions data. In J. E. Sturm & T. Wollmershäuser (Eds.), IFO survey data in business cycle analysis and monetary policy analysis (pp. 19–48). Heidelberg: Physica.Google Scholar
  77. Mokinski, F., Sheng, X., & Yang, J. (2015). Measuring disagreement in qualitative expectations. Journal of Forecasting, 34(5), 405–426.CrossRefGoogle Scholar
  78. Müller, C. (2010). You CAN Carlson–Parkin. Economics Letters, 108(1), 33–35.CrossRefGoogle Scholar
  79. Nardo, M. (2003). The quantification of qualitative data: A critical assessment. Journal of Economic Surveys, 17(5), 645–668.CrossRefGoogle Scholar
  80. Nolte, I., & Pohlmeier, W. (2007). Using forecasts of forecasters to forecast. International Journal of Forecasting, 23(1), 15–28.CrossRefGoogle Scholar
  81. Paloviita, M. (2006). Inflation dynamics in the euro area and the role of expectations. Empirical Economics, 31, 847–860.CrossRefGoogle Scholar
  82. Parigi, G., & Schlitzer, G. (1995). Quarterly forecasts of the Italian business-cycle by means of monthly economic indicators. Journal of Forecasting, 14(2), 117–141.CrossRefGoogle Scholar
  83. Pehkonen, J. (1992). Survey expectations and stochastic trends in modelling the employment-output equation. Oxford Bulletin of Economics and Statistics, 54(2), 579–589.Google Scholar
  84. Pesaran, M. H. (1984). Expectation formation and macroeconomic modelling. In P. Malgrange & P. A. Muet (Eds.), Contemporary macroeconomic modelling (pp. 27–55). Oxford: Basil Blackwell.Google Scholar
  85. Pesaran, M. H. (1985). Formation of inflation expectations in British manufacturing industries. Economic Journal, 95(380), 948–975.CrossRefGoogle Scholar
  86. Pesaran, M. H. (1987). The limits to rational expectations. Oxford: Basil Blackwell.Google Scholar
  87. Pesaran, M. H., & Weale, M. (2006). Survey expectations. In G. Elliott, C. W. J. Granger, & A. Timmermann (Eds.), Handbook of economic forecasting (Vol. 1, pp. 715–776). Amsterdam: Elsevier North-Holland.CrossRefGoogle Scholar
  88. Robinzonov, N., Tutz, G., & Hothorn, T. (2012). Boosting techniques for nonlinear time series models. AStA Advances in Statistical Analysis, 96(1), 99–122.CrossRefGoogle Scholar
  89. Schmeling, M., & Schrimpf, A. (2011). Expected inflation, expected stock returns, and money illusion: What can we learn from survey expectations. European Economic Review, 55(5), 702–719.CrossRefGoogle Scholar
  90. Seitz, H. (1988). The estimation of inflation forecasts from business survey data. Applied Economics, 20(4), 427–438.CrossRefGoogle Scholar
  91. Smith, J., & McAleer, M. (1995). Alternative procedures for converting qualitative response data to quantitative expectations: An application to Australian manufacturing. Journal of Applied Econometrics, 10(2), 165–185.CrossRefGoogle Scholar
  92. Stangl, A. (2007). Ifo World Economic Survey micro data. Journal of Applied Social Science Studies, 127(3), 487–496.Google Scholar
  93. Stangl, A. (2008). Essays on the measurement of economic expectations. Dissertation. Munich: Universität München.Google Scholar
  94. Taylor, K., & McNabb, R. (2007). Business cycles and the role of confidence: Evidence for Europe. Oxford Bulletin for Economics and Statistics, 69(2), 185–208.CrossRefGoogle Scholar
  95. Terai, A. (2009). Measurement error in estimating inflation expectations from survey data: An evaluation by Monte Carlo simulations. Journal of Business Cycle Measurement and Analysis, 8(2), 133–156.Google Scholar
  96. Theil, H. (1952). On the time shape of economic microvariables and the Munich Business Test. Revue de l’Institut International de Statistique, 20, 105–120.CrossRefGoogle Scholar
  97. Toyoda, T. (1979). Formation of inflation expectations in Japan. Economic Studies Quarterly, 30(3), 193–201.Google Scholar
  98. Van den Berg, G. J., Lindeboom, M., & Dolton, P. (2006). Survey non-response and unemployment duration. Journal of the Royal Statistical Society, Series A, 169(3), 585–604.CrossRefGoogle Scholar
  99. Vermeulen, P. (2014). An evaluation of business survey indices for short-term forecasting: Balance method versus Carlson–Parkin method. International Journal of Forecasting, 30(4), 882–897.CrossRefGoogle Scholar
  100. Yang, G., Li, X., Wang, J., Lian, L., & Ma, T. (2015). Modeling oil production based on symbolic regression. Energy Policy, 82(1), 48–61.CrossRefGoogle Scholar
  101. Zanin, L. (2010). The Relationship between changes in the Economic Sentiment Indicator and real GDP growth: A time-varying coefficient approach. Economics Bulletin, 30(1), 837–846.Google Scholar
  102. Zárate, H. M., Sánchez, K., & Marín, M. (2012). Quantification of ordinal surveys and rational testing: An application to the Colombian monthly survey of economic expectations. Revista Colombiana de Estadística, 35(1), 77–108.Google Scholar
  103. Zelinka, I. (2015). A survey on evolutionary algorithms dynamics and its complexity—Mutual relations, past, present and future. Swarm and Evolutionary Computation, 25, 2–14.CrossRefGoogle Scholar
  104. Zimmermann, K. F. (1997). Analysis of business surveys. In M. H. Pesaran & P. Schmidt (Eds.), Handbook of applied econometrics. Volume II: Microeconomics (pp. 407–441). Oxford: Blackwell.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.AQR-IREA (Regional Quantitative Analysis Group)University of Barcelona (UB)BarcelonaSpain
  2. 2.Department of Signal Theory and CommunicationsPolytechnic University of Catalunya (UPC)BarcelonaSpain
  3. 3.Department of Econometrics and Statistics, Riskcenter-IREAUniversity of Barcelona (UB)BarcelonaSpain

Personalised recommendations