Skip to main content
Log in

Data driven time scale in Gaussian quasi-likelihood inference

  • Published:
Statistical Inference for Stochastic Processes Aims and scope Submit manuscript

Abstract

We study parametric estimation of ergodic diffusions observed at high frequency. Different from the previous studies, we suppose that sampling stepsize is unknown, thereby making the conventional Gaussian quasi-likelihood not directly applicable. In this situation, we construct estimators of both model parameters and sampling stepsize in a fully explicit way, and prove that they are jointly asymptotically normally distributed. High order uniform integrability of the obtained estimator is also derived. Further, we propose the Schwarz (BIC) type statistics for model selection and show its model-selection consistency. We conducted some numerical experiments and found that the observed finite-sample performance well supports our theoretical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bhansali RJ, Papangelou F (1991) Convergence of moments of least squares estimators for the coefficients of an autoregressive process of unknown order. Ann Stat 19(3):1155–1162

    Article  MathSciNet  MATH  Google Scholar 

  • Brouste A, Fukasawa M, Hino H, Iacus SM, Kamatani K, Koike Y, Masuda H, Nomura R, Ogihara T, Shimizu Y, Uchida M, Yoshida N (2014) The yuima project: a computational framework for simulation and inference of stochastic differential equations. J Stat Softw 57(4):1–51

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference, 2nd edn. Springer, New York

    MATH  Google Scholar 

  • Eguchi S, Masuda H (2018) Schwarz type model comparison for LAQ models. Bernoulli 24(3):2278–2327

    Article  MathSciNet  MATH  Google Scholar 

  • Findley DF, Wei C-Z (2002) AIC, overfitting principles, and the boundedness of moments of inverse matrices for vector autoregressions and related models. J Multivar Anal 83(2):415–450

    Article  MathSciNet  MATH  Google Scholar 

  • Genon-Catalot V, Jacod J (1993) On the estimation of the diffusion coefficient for multi-dimensional diffusion processes. Ann Inst H Poincaré Probab Stat 29(1):119–151

    MathSciNet  MATH  Google Scholar 

  • Gobet E (2002) LAN property for ergodic diffusions with discrete observations. Ann Inst H Poincaré Prob Stat 38(5):711–737

    Article  MathSciNet  MATH  Google Scholar 

  • Heyde CC (1997) Quasi-likelihood and its application. Springer series in statistics. A general approach to optimal parameter estimation. Springer, New York

    Book  Google Scholar 

  • Jasra A, Kamatani K, Masuda H (2018) Bayesian inference for stable Lévy driven stochastic differential equations with high-frequency data. Scand J Stat. arXiv:1707.08788

  • Kamatani K, Uchida M (2015) Hybrid multi-step estimators for stochastic differential equations based on sampled data. Stat Inference Stoch Process 18(2):177–204

    Article  MathSciNet  MATH  Google Scholar 

  • Kessler M (1997) Estimation of an ergodic diffusion from discrete observations. Scand J Stat 24(2):211–229

    Article  MathSciNet  MATH  Google Scholar 

  • Kutoyants YA (2004) Statistical inference for ergodic diffusion processes. Springer series in statistics. Springer, London

    Google Scholar 

  • Magnus JR, Neudecker H (1979) The commutation matrix: some properties and applications. Ann Stat 7(2):381–394

    Article  MathSciNet  MATH  Google Scholar 

  • Masuda H (2013) Convergence of Gaussian quasi-likelihood random fields for ergodic Lévy driven SDE observed at high frequency. Ann Stat 41(3):1593–1641

    Article  MATH  Google Scholar 

  • Masuda H, Uehara Y (2017) On stepwise estimation of Lévy driven stochastic differential equation. Proc Inst Stat Math 65(1):21–38 (Japanese)

    Google Scholar 

  • Meyn S P, Tweedie R L (1993) Stability of Markovian processes. III. Foster–Lyapunov criteria for continuous-time processes. Adv Appl Probab 25(3):518–548

    Article  MathSciNet  MATH  Google Scholar 

  • Pace L, Salvan A (1997) Principles of statistical inference, volume 4 of advanced series on statistical science and applied probability. From a neo-Fisherian perspective. World Scientific Publishing Co., Inc., River Edge

    MATH  Google Scholar 

  • Sei T, Komaki F (2007) Bayesian prediction and model selection for locally asymptotically mixed normal models. J Stat Plan Inference 137(7):2523–2534

    Article  MathSciNet  MATH  Google Scholar 

  • Shoji I (2018) Detecting the sampling rate through observations. Commun Nonlinear Sci Numer Simul 62:445–453

    Article  Google Scholar 

  • Uchida M (2010) Contrast-based information criterion for ergodic diffusion processes from discrete observations. Ann Inst Stat Math 62(1):161–187

    Article  MathSciNet  MATH  Google Scholar 

  • Uchida M, Yoshida N (2001) Information criteria in model selection for mixing processes. Stat Inference Stoch Process 4(1):73–98

    Article  MathSciNet  MATH  Google Scholar 

  • Uchida M, Yoshida N (2006) Asymptotic expansion and information criteria. SUT J Math 42(1):31–58

    MathSciNet  MATH  Google Scholar 

  • Uchida M, Yoshida N (2011) Estimation for misspecified ergodic diffusion processes from discrete observations. ESAIM Probab Stat 15:270–290

    Article  MathSciNet  MATH  Google Scholar 

  • Uchida M, Yoshida N (2012) Adaptive estimation of an ergodic diffusion process based on sampled data. Stoch Process Appl 122(8):2885–2924

    Article  MathSciNet  MATH  Google Scholar 

  • Uchida M, Yoshida N (2013) Quasi likelihood analysis of volatility and nondegeneracy of statistical random field. Stoch Process Appl 123(7):2851–2876

    Article  MathSciNet  MATH  Google Scholar 

  • Uchida M, Yoshida N (2016) Model selection for volatility prediction. The fascination of probability, statistics and their applications. Springer, Berlin, pp 343–360

    Book  MATH  Google Scholar 

  • van der Vaart AW (1998) Asymptotic statistics, vol 3. Cambridge series in statistical and probabilistic mathematics. Cambridge University Press, Cambridge

    Google Scholar 

  • Veretennikov AY (1987) Estimates of the mixing rate for stochastic equations. Teor Veroyatnost i Primenen 32(2):299–308

    MathSciNet  MATH  Google Scholar 

  • Veretennikov AY (1997) On polynomial mixing bounds for stochastic differential equations. Stoch Process Appl 70(1):115–127

    Article  MathSciNet  MATH  Google Scholar 

  • Yoshida N (2011) Polynomial type large deviation inequalities and quasi-likelihood analysis for stochastic differential equations. Ann Inst Stat Math 63(3):431–479

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the two anonymous referees for careful reading and valuable comments which helped to greatly improve the paper. They also grateful to Prof. Isao Shoji for sending us his unpublished version of manuscript (Shoji 2018), which deals with a calibration problem of the sampling frequency from a completely different point of view from ours, and to Yuma Uehara for a helpful comment on Theorem 2.15. This work was partially supported by JST CREST Grant Number JPMJCR14D7, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoichi Eguchi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Stochastic expansion of the quasi-marginal log likelihood

Stochastic expansion of the quasi-marginal log likelihood

We here step away from the main context and present a set of conditions under which a quasi-marginal log likelihood admits a Schwarz type stochastic expansion, by making use of Jasra et al. (2018, Proof of Theorem 2.1).

Let \({\mathbb {H}}_{n}: \varTheta \times \varOmega \rightarrow {\mathbb {R}}\) be a \({\mathcal {C}}^{3}(\varTheta )\)-random function where \(\varTheta \subset {\mathbb {R}}^{p}\) is a bounded convex domain. Set \(\theta =(\alpha ,\beta )\in {\mathbb {R}}^{p_{\alpha }}\times {\mathbb {R}}^{p_{\beta }}\), and let \(\theta _{0}=(\alpha _{0},\beta _{0})\in \varTheta \) be a constant, and \(D_{n}=D_{n}(\theta _{0})={\mathrm{diag}}\big (\sqrt{r_{1,n}}I_{p_{\alpha }},\, \sqrt{r_{2,n}}I_{p_{\beta }}\big )\), where \((r_{1,n})\) and \((r_{2,n})\) are positive sequences possibly depending on \(\theta _{0}\) and satisfying that \(r_{1,n}\wedge r_{2,n}\rightarrow \infty \) and that \(r_{2,n}/r_{1,n}\rightarrow 0\) as \(n\rightarrow \infty \). We then introduce the random field on \({\mathbb {R}}^{p}\) associated with \({\mathbb {H}}_{n}\):

$$\begin{aligned} {\mathbb {Z}}_{n}(u):=\exp \left\{ {\mathbb {H}}_{n}(\theta _{0}+D_{n}^{-1}u) - {\mathbb {H}}_{n}(\theta _{0}) \right\} . \end{aligned}$$

Here we set \({\mathbb {Z}}_{n}\equiv 0\) outside the set \({\mathbb {U}}_{n}={\mathbb {U}}_{n}(\theta _{0}):=D_{n}(\varTheta -\theta _{0})\subset {\mathbb {R}}^{p}\). Let \({\mathfrak {p}}(\theta )\) be a bounded prior probability density on \(\varTheta \), which is assumed to be continuous and positive at \(\theta _{0}\). Let \(\varDelta _{n}(\theta _{0}):=D_{n}^{-1}\partial _{\theta }{\mathbb {H}}_{n}(\theta _{0})\) and

$$\begin{aligned} \varGamma _{0}:={\mathrm{diag}}(\varGamma _{1,0},\,\varGamma _{2,0}), \end{aligned}$$

where \(\varGamma _{1,0}\in {\mathbb {R}}^{p_{\alpha }}\otimes {\mathbb {R}}^{p_{\alpha }}\) and \(\varGamma _{2,0}\in {\mathbb {R}}^{p_{\beta }}\otimes {\mathbb {R}}^{p_{\beta }}\) are a.s. positive definite random matrices. Further, let

$$\begin{aligned} {\mathbb {Y}}_{1,n}(\theta )&:=\frac{1}{r_{1,n}}\{{\mathbb {H}}_{n}(\alpha ,\beta ) - {\mathbb {H}}_{n}(\alpha _{0},\beta )\}, \\ {\mathbb {Y}}_{2,n}(\beta )&:= \frac{1}{r_{2,n}} \{{\mathbb {H}}_{n}(\alpha _{0},\beta ) - {\mathbb {H}}_{n}(\alpha _{0},\beta _{0})\}, \end{aligned}$$

and \({\mathbb {Y}}_{1}(\alpha )\) and \({\mathbb {Y}}_{2}(\beta )\) be \({\mathbb {R}}\)-valued random functions. Finally, we introduce the quadratic random field

$$\begin{aligned} {\mathbb {Z}}^{0}_{n}(u) =\exp \bigg ( \varDelta _{n}(\theta _{0})[u] - \frac{1}{2}\varGamma _{0}[u,u] \bigg ). \end{aligned}$$

Theorem A.1

In addition to the aforementioned setting, suppose the following conditions.

  • There exists an a.s. positive definite random matrix \(\varSigma _{0}\in {\mathbb {R}}^{p}\otimes {\mathbb {R}}^{p}\) such that

    $$\begin{aligned} \left( \varDelta _{n}(\theta _{0}),\, -D_{n}^{-1}\partial _{\theta }^{2}{\mathbb {H}}_{n}(\theta _{0})D_{n}^{-1}\right) \overset{{\mathcal {L}}}{\rightarrow }\Big ( \varSigma _{0}^{1/2}\eta ,\, \varGamma _{0}\Big ), \end{aligned}$$
    (A.1)

    where \(\eta \sim N_{p}(0,I_{p})\) is a random variable defined on an extension of the original probability space.

  • We have

    $$\begin{aligned}&\sup _{\beta }\bigg \Vert \frac{1}{\sqrt{r_{1,n}}} \partial _{\alpha }{\mathbb {H}}_{n}(\alpha _{0},\beta ) \bigg \Vert = O_{p}(1), \end{aligned}$$
    (A.2)
    $$\begin{aligned}&\sup _{\beta } \bigg \Vert -\frac{1}{r_{1,n}}\partial _{\alpha }^{2}{\mathbb {H}}_{n}(\alpha _{0},\beta ) - \varGamma _{1,0}\bigg \Vert =o_{p}(1), \end{aligned}$$
    (A.3)
    $$\begin{aligned}&\sup _{\theta }\left\| D_{n}^{-1}\partial _{\theta }^{3}{\mathbb {H}}_{n}(\theta )D_{n}^{-1} \right\| = O_{p}(1). \end{aligned}$$
    (A.4)
  • There exists a constant \(q\in (0,1)\) for which

    $$\begin{aligned} r_{1,n}^{q/2}\sup _{\theta }\left| {\mathbb {Y}}_{1,n}(\theta )-{\mathbb {Y}}_{1}(\alpha )\right| \vee r_{2,n}^{q/2}\sup _{\beta }\left| {\mathbb {Y}}_{2,n}(\beta )-{\mathbb {Y}}_{2}(\beta )\right| \xrightarrow {{\mathbb {P}}} 0. \end{aligned}$$
    (A.5)
  • There exists an a.s. positive random variable \(\chi _{0}\) such that for each \(\kappa >0\),

    $$\begin{aligned} \sup _{\alpha ;\, |\alpha -\alpha _{0}|\ge \kappa }{\mathbb {Y}}_{1}(\alpha ) \vee \sup _{\beta ;\, |\beta -\beta _{0}|\ge \kappa }{\mathbb {Y}}_{2}(\beta ) \le -\chi _{0}\kappa ^{2}\qquad \text {a.s.} \end{aligned}$$
    (A.6)

Then, any \({\hat{\theta }}_{n} \in {\mathrm{argmax}}{\mathbb {H}}_{n}\) satisfies that \(D_{n}({\hat{\theta }}_{n}-\theta _{0})\xrightarrow {{\mathcal {L}}} \varGamma _{0}^{-1}\varSigma _{0}^{1/2}\eta \), and we have

$$\begin{aligned} \int \bigg |{\mathbb {Z}}_{n}(u)\pi (\theta _{0}+D_{n}^{-1}u) - {\mathbb {Z}}_{n}^{0}(u)\pi (\theta _{0}) \bigg |du \xrightarrow {{\mathbb {P}}} 0 \end{aligned}$$

and

$$\begin{aligned} {\mathfrak {L}}_{n}:=\log \bigg (\int _{\varTheta }\exp \{{\mathbb {H}}_{n}(\theta )\}{\mathfrak {p}}(\theta )d\theta \bigg )&={\mathbb {H}}_{n}(\theta _{0}) + \log |D_{n}^{-1}| + \log {\mathfrak {p}}(\theta _{0}) + \frac{p}{2}\log (2\pi ) \\&\quad -\frac{1}{2}\log |\varGamma _{0}| + \frac{1}{2}\varGamma _{0}^{-1}\left[ \varDelta _{n}(\theta _{0})^{\otimes 2}\right] + o_{p}(1). \end{aligned}$$

Further, if \(\log |D_{n}^{-1}| = \log |D_{n}^{-1}({\hat{\theta }}_{n})| + o_{p}(1)\) and \(\log {\mathfrak {p}}(\theta _{0})=\log {\mathfrak {p}}({\hat{\theta }}_{n})+o_{p}(1)\), then

$$\begin{aligned} {\mathfrak {L}}_{n}&={\mathbb {H}}_{n}({\hat{\theta }}_{n}) + \log |D_{n}^{-1}({\hat{\theta }}_{n})| + \log {\mathfrak {p}}({\hat{\theta }}_{n}) + \frac{p}{2}\log (2\pi ) \\&\quad -\frac{1}{2}\log |-D_{n}^{-1}\partial _{\theta }^{2} {\mathbb {H}}_{n}({\hat{\theta }}_{n})D_{n}^{-1}| + o_{p}(1). \end{aligned}$$

Theorem A.1 can apply to general locally asymptotically quadratic models under weaker conditions compared with Eguchi and Masuda (2018, Theorem 3.7). A formal extension of Theorem A.1 to cases of more than two rates is straightforward.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eguchi, S., Masuda, H. Data driven time scale in Gaussian quasi-likelihood inference. Stat Inference Stoch Process 22, 383–430 (2019). https://doi.org/10.1007/s11203-019-09197-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11203-019-09197-x

Keywords

Navigation