Skip to main content

Model Selection for Volatility Prediction

  • Chapter
  • First Online:
The Fascination of Probability, Statistics and their Applications

Abstract

We consider a stochastic regression model defined by stochastic differential equations. Based on an expected Kullback-Leibler information for the approximated distributions, we propose an information criterion for selection of volatility models. We show that the information criterion is asymptotically unbiased for the expected Kullback-Leibler information. We also give examples and simulation results of model selection.

Dedicated to Professor Ole Barndorff-Nielsen on the occasion of his 80th birthday

This work was in part supported by Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research Nos. 24340015 and 24300107 (Scientific Research), Nos. 24654024, 24650148 and 26540011 (Challenging Exploratory Research); CREST Japan Science and Technology Agency; NS Solutions Corporation; and by a Cooperative Research Program of the Institute of Statistical Mathematics. The authors thank the referee for valuable comments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    However, as a matter of fact, it is incorrect as for estimation of volatility.

  2. 2.

    That is, there exists a constant C such that \(|\partial _\theta ^\mathbf{\nu } \partial _x^\mathbf{n} f(x,\theta )| \le C(1+|x|)^C\) for all \((x,\theta )\in {\mathbb R}^\mathsf{d}\times \Theta \).

  3. 3.

    The integrability condition can be relaxed, in fact.

References

  1. Akaike, H.: Information theory and an extension of the likelihood ratio principle. In: Petrov, B.N., Csaki, F. (eds.) Proceedings of the Second International Symposium of Information Theory, pp. 267–281 (1973)

    Google Scholar 

  2. Akaike, H.: A new look at the statistical model identification. IEEE Trans. Autom. Control 19(6), 716–723 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  3. Andersen, T.G., Bollerslev, T.: Answering the skeptics: yes, standard volatility models do provide accurate forecasts. Int. Econ. Rev. 39, 885–905 (1998)

    Article  Google Scholar 

  4. Andersen, T.G., Bollerslev, T., Diebold, F.X., Labys, P.: The distribution of realized exchange rate volatility. J. Amer. Statist. Assoc. 96(453), 42–55 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Anderson, T.W.: On asymptotic distributions of estimates of parameters of stochastic difference equations. Ann. Math. Statist. 30, 676–687 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  6. Barndorff-Nielsen, O.E., Shephard, N.: Econometric analysis of realized volatility and its use in estimating stochastic volatility models. J. R. Stat. Soc. Ser. B Stat. Methodol. 64(2), 253–280 (2002)

    Google Scholar 

  7. Barndorff-Nielsen, O.E., Shephard, N.: Econometric analysis of realized covariation: high frequency based covariance, regression, and correlation in financial economics. Econometrica 72(3), 885–925 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Basawa, I.V., Koul, H.L.: Asymptotic tests of composite hypotheses for nonergodic type stochastic processes. Stoch. Process. Appl. 9(3), 291–305 (1979). doi:10.1016/0304-4149(79)90051-6

    Google Scholar 

  9. Basawa, I.V., Prakasa Rao, B.L.S.: Statistical inference for stochastic processes. In: Probability and Mathematical Statistics. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], London (1980)

    Google Scholar 

  10. Basawa, I.V., Scott, D.J.: Asymptotic optimal inference for nonergodic models. In: Lecture Notes in Statistics, vol. 17. Springer, New York (1983)

    Google Scholar 

  11. Bibby, B.M., Sørensen, M.: Martingale estimation functions for discretely observed diffusion processes. Bernoulli 1(1–2), 17–39 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dacunha-Castelle, D., Florens-Zmirou, D.: Estimation of the coefficients of a diffusion from discrete observations. Stochastics 19(4), 263–284 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  13. Feigin, P.D.: Stable convergence of semimartingales. Stoch. Process. Appl. 19(1), 125–134 (1985). doi:10.1016/0304-4149(85)90044-4

    Google Scholar 

  14. Florens-Zmirou, D.: Approximate discrete-time schemes for statistics of diffusion processes. Statistics 20(4), 547–557 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  15. Genon-Catalot, V., Jacod, J.: On the estimation of the diffusion coefficient for multi-dimensional diffusion processes. Ann. Inst. H. Poincaré Probab. Statist. 29(1), 119–151 (1993)

    MathSciNet  MATH  Google Scholar 

  16. Jacod, J.: On continuous conditional Gaussian martingales and stable convergence in law. In: Séminaire de Probabilités, XXXI, Lecture Notes in Mathematics, vol. 1655, pp. 232–246. Springer, Berlin (1997)

    Google Scholar 

  17. Jakubowski, A., Mémin, J., Pages, G.: Convergence en loi des suites d’intégrales stochastiques sur l’espace 1 de skorokhod. Probab. Theory Relat. Fields 81(1), 111–137 (1989)

    Article  MATH  Google Scholar 

  18. Jeganathan, P.: On the asymptotic theory of estimation when the limit of the log-likelihood ratios is mixed normal. Sankhyā Ser. A 44(2), 173–212 (1982)

    MathSciNet  MATH  Google Scholar 

  19. Keiding, N.: Correction to: “Estimation in the birth process” (Biometrika 61 (1974), 71–80). Biometrika 61, 647 (1974)

    Article  MathSciNet  Google Scholar 

  20. Keiding, N.: Maximum likelihood estimation in the birth-and-death process. Ann. Statist. 3, 363–372 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kessler, M.: Estimation of an ergodic diffusion from discrete observations. Scand. J. Statist. 24(2), 211–229 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. Konishi, S., Kitagawa, G.: Generalised information criteria in model selection. Biometrika 83(4), 875–890 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kurtz, T.G., Protter, P.: Weak limit theorems for stochastic integrals and stochastic differential equations. Ann. Probab. 19(3), 1035–1070 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kusuoka, S., Yoshida, N.: Malliavin calculus, geometric mixing, and expansion of diffusion functionals. Probab. Theory Relat. Fields 116(4), 457–484 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Masuda, H. : Convergence of gaussian quasi-likelihood random fields for ergodic lévy driven sde observed at high frequency. Ann. Stat. 41(3), 1593–1641 (2013)

    Google Scholar 

  26. Ogihara, T., Yoshida, N.: Quasi-likelihood analysis for the stochastic differential equation with jumps. Stat. Infer. Stoch. Process. 14(3), 189–229 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ogihara, T., Yoshida, N.: Quasi-likelihood analysis for stochastic regression models with nonsynchronous observations (2012). arXiv preprint arXiv:1212.4911

  28. Podolskij, M., Yoshida, N.: Edgeworth expansion for functionals of continuous diffusion processes (2013). arXiv preprint arXiv:1309.2071

  29. Prakasa Rao, B.L.S.: Asymptotic theory for nonlinear least squares estimator for diffusion processes. Math. Operationsforsch. Statist. Ser. Statist. 14(2), 195–209 (1983)

    Google Scholar 

  30. Prakasa Rao, B.L.S.: Statistical inference from sampled data for stochastic processes. In: Statistical Inference from Stochastic Processes (Ithaca, NY, 1987), Contemporary Mathematics, vol. 80, pp. 249–284. American Mathematical Society, Providence (1988)

    Google Scholar 

  31. Rao, M.M.: Consistency and limit distributions of estimators of parameters in explosive stochastic difference equations. Ann. Math. Statist. 32, 195–218 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  32. Schwarz, G., et al.: Estimating the dimension of a model. Ann. Stat. 6(2), 461–464 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  33. Shimizu, Y., Yoshida, N.: Estimation of parameters for diffusion processes with jumps from discrete observations. Stat. Infer. Stoch. Process. 9(3), 227–277 (2006). doi: 10.1007/s11203-005-8114-x

    Google Scholar 

  34. Takeuchi, K.: Distribution of information statistics and criteria for adequacy of models. Math. Sci. 153, 12–18 (1976). (In Japanese)

    Google Scholar 

  35. Uchida, M.: Contrast-based information criterion for ergodic diffusion processes from discrete observations. Ann. Inst. Stat. Math. 62(1), 161–187 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Uchida, M., Yoshida, N.: Information criteria in model selection for mixing processes. Stat. Infer. Stoch. Process. 4(1), 73–98 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  37. Uchida, M., Yoshida, N.: Information criteria for small diffusions via the theory of Malliavin-Watanabe. Stat. Infer. Stoch. Process. 7(1), 35–67 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  38. Uchida, M., Yoshida, N.: Asymptotic expansion and information criteria. SUT J. Math. 42(1), 31–58 (2006)

    MathSciNet  MATH  Google Scholar 

  39. Uchida, M., Yoshida, N.: Adaptive estimation of an ergodic diffusion process based on sampled data. Stoch. Process. Appl. 122(8), 2885–2924 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  40. Uchida, M., Yoshida, N.: Quasi likelihood analysis of volatility and nondegeneracy of statistical random field. Stoch. Process. Appl. 123(7), 2851–2876 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  41. White, J.S.: The limiting distribution of the serial correlation coefficient in the explosive case. Ann. Math. Statist. 29, 1188–1197 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  42. Yoshida, N.: Estimation for diffusion processes from discrete observation. J. Multivar. Anal. 41(2), 220–242 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  43. Yoshida, N.: Malliavin calculus and asymptotic expansion for martingales. Probab. Theory Relat. Fields 109(3), 301–342 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  44. Yoshida, N.: Malliavin calculus and martingale expansion. Bull. Sci. Math. 125(6–7), 431–456 (2001). Rencontre Franco-Japonaise de Probabilités (Paris, 2000)

    Google Scholar 

  45. Yoshida, N.: Partial mixing and conditional edgeworth expansion for diffusions with jumps. Probab. Theory Relat. Fields 129, 559–624 (2004)

    Article  MATH  Google Scholar 

  46. Yoshida, N.: Polynomial type large deviation inequalities and quasi-likelihood analysis for stochastic differential equations. Ann. Inst. Stat. Math. 63(3), 431–479 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  47. Yoshida, N.: Asymptotic expansion for the quadratic form of the diffusion process (2012). arXiv preprint arXiv:1212.5845

  48. Yoshida, N.: Martingale expansion in mixed normal limit (2012). arXiv preprint arXiv:1210.3680v3

  49. Yoshida, N.: Martingale expansion in mixed normal limit. Stoch. Process. Appl. 123(3), 887–933 (2013). doi: 10.1016/j.spa.2012.10.007

    Google Scholar 

  50. Yoshida, N.: Stochastic expansion of the quasi maximum likelihood estimator for volatility (2015). to be available at arXiv

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nakahiro Yoshida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Uchida, M., Yoshida, N. (2016). Model Selection for Volatility Prediction. In: Podolskij, M., Stelzer, R., Thorbjørnsen, S., Veraart, A. (eds) The Fascination of Probability, Statistics and their Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-25826-3_16

Download citation

Publish with us

Policies and ethics