Skip to main content
Log in

A kriging procedure for processes indexed by graphs

  • Published:
Statistical Inference for Stochastic Processes Aims and scope Submit manuscript

Abstract

We provide a new kriging procedure of processes on graphs. Based on the construction of Gaussian random processes indexed by graphs, we extend to this framework the usual linear prediction method for spatial random fields, known as kriging. We provide the expression of the estimator of such a random field at unobserved locations as well as a control for the prediction error.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Dahlhaus R, Künsch H (1987) Edge effects and efficient parameter estimation for stationary random fields. Biometrika 74(4):877–882

    Article  MathSciNet  MATH  Google Scholar 

  • Darroch JN, Lauritzen SL, Speed TP (1980) Markov fields and log-linear interaction models for contingency tables. Ann Stat 8(3):522–539

    Article  MathSciNet  MATH  Google Scholar 

  • Espinasse T, Gamboa F, Loubes JM (2011) Gaussian stationary processes over graphs, general frame and maximum likelihood identification. ArXiv e-prints, April

  • Kerner BS (1999) The physics of traffic. Phys World 12(8):25–30

    Article  Google Scholar 

  • L. C. M., L. S., R. X., H. F., and J. B. Colloque Arcéométrie GMPCA et Centre Européen d’Archéométrie

  • Rudin W (1991) Functional analysis. International series in pure and ppplied mathematics, 2nd edn. McGraw-Hill Inc., New York

    Google Scholar 

  • Stein ML (1999) Interpolation of spatial data. Springer series in statistics. Springer, New York Some theory for kriging

    Book  Google Scholar 

  • Verzelen N (2010) Adaptive estimation of stationary Gaussian fields. Ann Stat 38(3):1363–1402

    Article  MathSciNet  MATH  Google Scholar 

  • Verzelen N, Villers F (2009) Tests for Gaussian graphical models. Comput Stat Data Anal 53(5):1894–1905

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Espinasse.

Appendix

Appendix

Proof

of Lemma 4.2

First, denote

$$\begin{aligned} A_{N,p}\left( f,\hat{f}_N\right) = {\mathcal {K}}_{BO_p}(\hat{f}_N) \left( {\mathcal {K}}_{O_p}(\hat{f}_N)\right) ^{-1} - {\mathcal {K}}_{BO_p}(f) \left( {\mathcal {K}}_{O_p}(f)\right) ^{-1} , \end{aligned}$$

and note that, \({\mathbb {P}}_X \otimes {\mathbb {P}}_Y\)-a.s.,

$$\begin{aligned} \left( \hat{Z}_{B} - \bar{Z}_{B}\right) ^2 = a_{B}^T\left( A_{N,p}\left( f,\hat{f}_N\right) \right) ^TX_{O_p} X_{O_p}^TA_{N,p}\left( f,\hat{f}_N\right) a_{B} \end{aligned}$$

Then, notice that

$$\begin{aligned}&\sup _{\mathop { \left\| a_B\right\| _2 = 1}\limits ^{ Z_B = a_B^TX_B}} {\mathbb {E}} \Bigg [ \Big ( \bar{Z}_{B} - \hat{Z}_{B} \Big )^2 \Bigg ] ^{\frac{1}{2}}\\&\qquad \le \left( \sup _{ \mathop { \left\| a_{B} \right\| _2 = 1}\limits ^{ {\text {supp}}(a_{B}) \subset {B}}} {\mathbb {E}} _{{\mathbb {P}}_Y}\left[ a_{B}^T \left( A_{N,p} \left( f,\hat{f}_p\right) \right) ^T{\mathcal {K}}_{O_p}(f)A_{N,p}\left( f,\hat{f}_N\right) a_{B} \right] \right) ^{\frac{1}{2}}\\&\qquad \le {\mathbb {E}} _{{\mathbb {P}}_Y}\left[ \sup _{ \mathop { \left\| a_{B} \right\| _2 = 1}\limits ^{ {\text {supp}}(a_{B}) \subset {B}}} a_{B}^T \left( A_{N,p}\left( f,\hat{f}_N\right) \right) ^T{\mathcal {K}}_{O_p}(f)A_{N,p}\left( f,\hat{f}_N\right) a_{B} \right] ^{\frac{1}{2}} . \end{aligned}$$

Thus,

$$\begin{aligned} \sup _{ \mathop { \left\| a_B\right\| _2 = 1}\limits ^{ Z_B = a_B^TX_B}} {\mathbb {E}} \left[ \left( \bar{Z}_{B} - \hat{Z}_{B} \right) ^2 \right] ^{\frac{1}{2}} \le {\mathbb {E}} _{{\mathbb {P}}_Y}\left[ \left\| \left( A_{N,p}\left( f,\hat{f}_N\right) \right) ^T{\mathcal {K}}_{O_p}(f)A_{N,p}\left( f,\hat{f}_N\right) \right\| _{2,op} \right] ^{\frac{1}{2}}. \end{aligned}$$

Furthermore, it holds, \({\mathbb {P}}_Y\)-a.s., that

$$\begin{aligned} \left\| \left( A_{N,p}\left( f,\hat{f}_N\right) \right) ^T{\mathcal {K}}_{O_p}(f)A_{N,p}\left( f,\hat{f}_N\right) \right\| _{2,op}&\le \left\| A_{N,p}\left( f,\hat{f}_N\right) \right\| _{2,op}^2 \left\| {\mathcal {K}}_{O_p}(f) \right\| _{2,op} \end{aligned}$$

But,

$$\begin{aligned}&\left\| A_{N,p}\left( f,\hat{f}_N\right) \right\| _{2,op}\\&\quad \le \left\| {\mathcal {K}}_{BO_N}(\hat{f}_N) \left( {\mathcal {K}}_{O_p}(\hat{f}_N)\right) ^{-1} - {\mathcal {K}}_{BO_p}(f) \left( {\mathcal {K}}_{O_p}(\hat{f}_N)\right) ^{-1} \right\| _{2,op}\\&\qquad + \left\| {\mathcal {K}}_{BO_p}(f) \left( {\mathcal {K}}_{O_p}(\hat{f}_N)\right) ^{-1} - {\mathcal {K}}_{BO_p}(f) \left( {\mathcal {K}}_{O_p}(f)\right) ^{-1} \right\| _{2,op}\\&\quad \le \left\| \left( {\mathcal {K}}_{O_p}(\hat{f}_N)\right) ^{-1} \right\| _{2,op} \left\| {\mathcal {K}}_{BO_p}(\hat{f}_N) - {\mathcal {K}}_{BO_p}(f) \right\| _{2,op} + \left\| {\mathcal {K}}_{BO_p}(f) \right\| _{2,op} \\&\qquad \times \left\| \left( {\mathcal {K}}_{O_p}(f)\right) ^{-1} \right\| _{2,op} \left\| \left( {\mathcal {K}}_{O_p}(\hat{f}_N)\right) ^{-1} \right\| _{2,op} \left\| {\mathcal {K}}_{O_p}(\hat{f}_N)- {\mathcal {K}}_{O_p}(f) \right\| _{2,op}\\&\quad \le \frac{1}{m} \left\| f - \hat{f}_N \right\| _\infty + \frac{M}{m^2} \left\| f - \hat{f}_N \right\| _\infty \end{aligned}$$

Here we used the inequality

$$\begin{aligned} \left\| {\mathcal {K}}(f) \right\| _{2,op} \le \left\| f \right\| _\infty \end{aligned}$$

We get

$$\begin{aligned} \sup _{ \mathop { \left\| a_B\right\| _2 = 1}\limits ^{ Z_B = a_B^TX_B}} {\mathbb {E}} \left[ \left( \bar{Z}_{B} - \hat{Z}_{B} \right) ^2 \right] ^{\frac{1}{2}}&\le \frac{\sqrt{M}(m+M)}{m^2} {\mathbb {E}} _{{\mathbb {P}}_Y}\left[ \left\| f - \hat{f}_N \right\| _\infty ^2 \right] ^{\frac{1}{2}}.\\&\le \frac{\sqrt{M}(m+M)}{m^2} r_N \end{aligned}$$

\(\square \)

Proof

of Lemma 4.3

First, define for all \(A \subset G\), the operator \(p_{A}\) by

$$\begin{aligned} \forall i,\quad j \in G,\quad \left( p_{A}\right) _{ij} = {\mathbb {I}}_{i \in A}{\mathbb {I}}_{i \sim j}. \end{aligned}$$

To compute the rate of convergence of the bias term \(\bar{Z}_B-\tilde{Z}_B\), we can compute directly,

$$\begin{aligned}&\sup _{ \mathop { \left\| a_B\right\| _2 = 1}\limits ^{ Z_B = a_B^TX_B}} {\mathbb {E}} \Bigg [ \big ( \bar{Z}_{B} - \tilde{Z}_{B} \Big )^2 \Bigg ] ^{\frac{1}{2}}\\&\qquad \le \left\| {\mathcal {K}}_{BO_p}(f) \left( {\mathcal {K}}_{O_p}(f)\right) ^{-1} p_{O_p} - K_{BO}(f) \left( {\mathcal {K}}_{O}(f)\right) ^{-1} \right\| _{2,op} \left\| {\mathcal {K}}_{O}(f)\right\| _{2,op}^{\frac{1}{2}} \end{aligned}$$

Note that, since \(B \cup O = G\), we have immediately that \(\left( {\mathcal {K}}_{B \cup O}(f) \right) ^{-1} = {\mathcal {K}}\left( \frac{1}{f}\right) \).

Using a Schur decomposition, we get

$$\begin{aligned}&\sup _{\mathop { \left\| a_B\right\| _2 = 1}\limits ^{ Z_B = a_B^TX_B}} {\mathbb {E}} \Bigg [ \big ( \bar{Z}_{B} - \tilde{Z}_{B} \Big )^2 \Bigg ] ^{\frac{1}{2}}\\&\qquad \le \sqrt{M} \left\| {\mathcal {K}}_{BO_p}(f) \left( {\mathcal {K}}_{O_p}(f)\right) ^{-1} + \left( {\mathcal {K}}_{B}\left( \frac{1}{f}\right) \right) ^{-1} {\mathcal {K}}_{BO}\left( \frac{1}{f}\right) \right\| _{2,op}\\&\qquad \le \sqrt{M} \left\| {\mathcal {K}}_{BO_p}(f) \left( {\mathcal {K}}_{O_p}(f)\right) ^{-1} + \left( {\mathcal {K}}_{B}\left( \frac{1}{f}\right) \right) ^{-1}{\mathcal {K}}_{BO_p}\left( \frac{1}{f}\right) \right\| _{2,op}\\&\qquad \quad + \sqrt{M} \left\| \left( {\mathcal {K}}_{B}\left( \frac{1}{f}\right) \right) ^{-1} \right\| _{2,op} \left\| {\mathcal {K}}_{B(O\setminus O_p)}\left( \frac{1}{f}\right) \right\| _{2,op}\\&\qquad \le \sqrt{M} \left\| {\mathcal {K}}_{B}\left( \frac{1}{f}\right) {\mathcal {K}}_{BO_p}(f) + {\mathcal {K}}_{BO_N}\left( \frac{1}{f}\right) {\mathcal {K}}_{O_p}(f) \right\| _{2,op}\\&\qquad \quad \times \left\| \left( {\mathcal {K}}_{O_p}(f)\right) ^{-1} \right\| _{2,op} \left\| \left( {\mathcal {K}}_{B}\left( \frac{1}{f}\right) \right) ^{-1} \right\| _{2,op} + M^{\frac{3}{2}} \left\| {\mathcal {K}}_{B(O\setminus O_p)}\left( \frac{1}{f}\right) \right\| _{2,op}\\&\qquad \le \frac{M^{\frac{3}{2}}}{m} \left\| - {\mathcal {K}}_{B(O\setminus O_p)}\left( \frac{1}{f}\right) {\mathcal {K}}_{(O\setminus O_p)O_p}(f) \right\| _{2,op}\\&\qquad \quad + M^{\frac{3}{2}} \left\| {\mathcal {K}}_{B(O\setminus O_p)}\left( \frac{1}{f}\right) \right\| _{2,op} \end{aligned}$$

This leads to

$$\begin{aligned} \sup _{ \mathop { \left\| a_B\right\| _2 = 1}\limits ^{ Z_B = a_B^TX_B}} {\mathbb {E}} \Bigg [ \big ( \bar{Z}_{B}&- \tilde{Z}_{B} \Big )^2 \Bigg ] ^{\frac{1}{2}} \le \left( \frac{M^{\frac{5}{2}}}{m} + M^{\frac{3}{2}} \right) \left\| {\mathcal {K}}_{B(O \setminus O_p)}\left( \frac{1}{f}\right) \right\| _{2,op} \end{aligned}$$
(4)

Moreover, we can write

$$\begin{aligned} \left\| {\mathcal {K}}_{B(O \setminus O_p)}\left( \frac{1}{f}\right) \right\| _{2,op}&\le \sum _{k \ge 0} \left| \left( \frac{1}{f}\right) _k \right| \left\| \left( A^k\right) _{B(O \setminus O_p)} \right\| _{2,op}\\&\le \sum _{k \ge d_G\left( B, (O\setminus O_p)\right) } \left| \left( \frac{1}{f}\right) _k \right| \le \sum _{k \ge d_G\left( B, (G\setminus G_p)\right) } \left| \left( \frac{1}{f}\right) _k \right| \\&\le \frac{1}{d_G\left( B, (G\setminus G_p)\right) } \sum _{k \ge d_G\left( B, (G\setminus G_p)\right) } k \left| \left( \frac{1}{f}\right) _k \right| \\&\le \frac{M}{m^2}m_p \end{aligned}$$

\(\square \)

Proof

of Lemma 4.5

For sake of simplicity, let us denote \(O_p\) instead of \(O_{p(N)}\) in the whole proof.

We still denote

$$\begin{aligned} A_{N,p}\left( f,\hat{f}_N\right) = {\mathcal {K}}_{BO_p}(\hat{f}_N) \left( {\mathcal {K}}_{O_p}(\hat{f}_N)\right) ^{-1} - {\mathcal {K}}_{BO_p}(f) \left( {\mathcal {K}}_{O_p}(f)\right) ^{-1} , \end{aligned}$$

Then, notice that

$$\begin{aligned}&\sup _{\mathop { \left\| a_B\right\| _2 = 1}\limits ^{ Z_B = a_B^TX_B}} {\mathbb {E}} \Bigg [ \Big ( \bar{Z}_{B} - \hat{Z}_{B} \Big )^2 \Bigg ] ^{\frac{1}{2}}\\&\qquad \le \left( \sup _{ \mathop { \left\| a_{B} \right\| _2 = 1}\limits ^{ {\text {supp}}(a_{B}) \subset {B}}} {\mathbb {E}} \left[ {\text {Tr}} \left( a_{B}^T \left( A_{N,p}\left( f,\hat{f}_N\right) \right) ^TX_{O_p}X_{O_p}^TA_{N}\left( f,\hat{f}_N\right) a_{B} \right) \right] \right) ^{\frac{1}{2}}\\&\qquad \le \left( \sup _{ \mathop { \left\| a_{B} \right\| _2 = 1}\limits ^{ {\text {supp}}(a_{B}) \subset {B}}} {\mathbb {E}} \left[ {\text {Tr}} \left( X_{O_p}X_{O_p}^TA_{N,p}\left( f,\hat{f}_N\right) a_{B} a_{B}^T \left( A_{N,p}\left( f,\hat{f}_N\right) \right) ^T\right) \right] \right) ^{\frac{1}{2}} \end{aligned}$$

Applying Cauchy Schwarz inequality, we get

$$\begin{aligned}&\sup _{\mathop { \left\| a_B\right\| _2 = 1}\limits ^{ Z_B = a_B^TX_B}} {\mathbb {E}} \Bigg [ \Big ( \bar{Z}_{B} - \hat{Z}_{B} \Big )^2 \Bigg ] ^{\frac{1}{2}}\\&\qquad \le \Bigg ( {\mathbb {E}} \left[ {\text {Tr}} \left( \left( X_{O_p}X_{O_p}^T \right) ^2 \right) \right] \\&\qquad \qquad \times \sup _{ \mathop { \left\| a_{B} \right\| _2 = 1}\limits ^{ {\text {supp}}(a_{B}) \subset {B}}} {\mathbb {E}} \left[ {\text {Tr}} \left( \left( A_{N,p}\left( f,\hat{f}_N\right) a_{B} a_{B}^T \left( A_{N,p}\left( f,\hat{f}_N\right) \right) ^T\right) ^2 \right) \right] \Bigg )^{\frac{1}{4}} \end{aligned}$$

But, on the one hand, we have

$$\begin{aligned} {\mathbb {E}} \left[ {\text {Tr}} \left( \left( X_{O_p}X_{O_p}^T \right) ^2 \right) \right]&= {\mathbb {E}} \left[ {\text {Tr}} \left( \left( X_{O_p}^TX_{O_p} \right) ^2 \right) \right] \\&= {\mathbb {E}} \left[ \left( \sum _{i \in O_p} X_i^2 \right) ^2 \right] \end{aligned}$$

And on the other hand, we can write

$$\begin{aligned}&\sup _{ \mathop { \left\| a_{B} \right\| _2 = 1}\limits ^{ {\text {supp}}(a_{B}) \subset {B}}} {\mathbb {E}} \left[ {\text {Tr}} \left( \left( A_{N}\left( f,\hat{f}_N\right) a_{B} a_{B}^T \left( A_{N,p}\left( f,\hat{f}_N\right) \right) ^T\right) ^2 \right) \right] \\&\qquad \le \sup _{ \mathop { \left\| a_{B} \right\| _2 = \left\| b_{B} \right\| _2 = 1}\limits ^{ {\text {supp}}(a_{B}, b_{B}) \subset {B}}} {\mathbb {E}} \Bigg [{\text {Tr}} \bigg ( a_{B}^T \left( A_{N,p}\left( f,\hat{f}_N\right) \right) ^TA_{N,p}\left( f,\hat{f}_N\right) \\&\qquad \qquad \times b_{B} b_{B}^T \left( A_{N,p}\left( f,\hat{f}_N\right) \right) ^TA_{N,p}\left( f,\hat{f}_N\right) a_{B} \bigg ) \Bigg ]\\&\qquad \le \sup _{ \mathop { \left\| b_{B} \right\| _2 = 1}\limits ^{ {\text {supp}}(b_{B}) \subset {B}}} {\mathbb {E}} \Bigg [ \left\| A_{N,p}\left( f,\hat{f}_N\right) \right\| _{2,op}^4 \left\| b_{B} b_{B}^T \right\| _{2,op} \Bigg ]\\&\qquad \le {\mathbb {E}} \Bigg [ \left\| A_{N,p}\left( f,\hat{f}_N\right) \right\| _{2,op}^4 \Bigg ]\\&\qquad \le \left( \frac{m+M}{m^2}\right) ^4 {\mathbb {E}} \Bigg [ \left\| f -\hat{f}_N \right\| _{\infty }^4 \Bigg ] \end{aligned}$$

Thus,

$$\begin{aligned} \sup _{ \mathop { \left\| a_B\right\| _2 = 1}\limits ^{ Z_B = a_B^TX_B}} {\mathbb {E}} \Bigg [ \Big ( \bar{Z}_{B}&- \hat{Z}_{B} \Big )^2 \Bigg ] ^{\frac{1}{2}} \le \frac{m+M}{m^2} {\mathbb {E}} \left[ \left( \sum _{i \in O_p} X_i^2 \right) ^2 \right] ^{\frac{1}{4}} r_N \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Espinasse, T., Loubes, JM. A kriging procedure for processes indexed by graphs. Stat Inference Stoch Process 19, 159–173 (2016). https://doi.org/10.1007/s11203-015-9128-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11203-015-9128-7

Keywords

Navigation