Skip to main content
Log in

Discrete universality of the L-functions of elliptic curves

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

A discrete universality theorem is obtained in the Voronin sense for the L-functions of elliptic curves. We use the difference of an arithmetical progression h > 0 such that \( \exp \left\{ {\frac{{2\pi k}} {h}} \right\} \) is rational for some k ≠ 0. A limit theorem in the space of analytic functions plays a crucial role in the proof.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Breuil C., Conrad B., Diamond F., and Taylor R., “On the modularity of elliptic curves over ℚ: wild 3-adic exercises,” J. Amer. Math. Soc., 14, No. 4, 843–939 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  2. Washington L. C., Elliptic Curves. Number Theory and Cryptography, Chapman and Hall/CRC, London, New York (2003).

    MATH  Google Scholar 

  3. Garbaliauskienė V. and Laurinčikas A., “Some analytic properties for L-functions of elliptic curves,” Proc. Inst. Math., 13, No. 1, 1–8 (2005).

    Google Scholar 

  4. Laurinčikas A., Matsumoto K., and Steuding J., “The universality of L-functions associated to new forms,” Izv. Math, 67, No. 1, 77–90 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  5. Voronin S. M., “A theorem on the ‘universality’ of the Riemann zeta-function,” Math. USSR-Izv., 9, 443–453 (1975).

    Article  MATH  Google Scholar 

  6. Garbaliauskienė V. and Laurinčikas A., “Discrete value distribution of L-functions of elliptic curves,” Publ. Inst. Math., 76, No. 90, 65–71 (2004).

    Article  Google Scholar 

  7. Kačinskaitė R. and Laurinčikas A., “On the value distribution of the Matsumoto zeta-function,” Acta Math. Hungar., 105, No. 4, 339–359 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  8. Billingsley P., Convergence of Probability Measures, John Wiley & Sons, New York (1968).

    MATH  Google Scholar 

  9. Laurinčikas A., Limit Theorems for the Riemann Zeta-Function, Kluwer Acad. Publ., Dordrecht; Boston; London (1996).

    Google Scholar 

  10. Conway J. B., Functions of One Complex Variable, Springer-Verlag, New York (1973).

    MATH  Google Scholar 

  11. Montgomery L. M., Topics in Multiplicative Number Theory, Springer-Verlag, Berlin (1971).

    MATH  Google Scholar 

  12. Loève M., Probability Theory, Van Nostrand, Toronto (1955).

    MATH  Google Scholar 

  13. Wiles A., “Modular elliptic curves and Fermat’s last theorem,” Ann. Math., 144, 443–551 (1995).

    Article  MathSciNet  Google Scholar 

  14. Murty M. R. and Murty V. K., Non-Vanishing of L-Functions and Applications, Birkhäuser, Basel etc. (1997).

    Google Scholar 

  15. Walsh J. L., Interpolation and Approximation by Rational Functions in the Complex Domain, Amer. Math. Soc., Providence, RI (1960) (Amer. Math. Soc. Collog. Publ.; 20).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Garbaliauskienė.

Additional information

Original Russian Text Copyright © 2008 Garbaliauskienė V., Genys J., and Laurinčikas A.

The third author was partially supported by the Lithuanian Foundation of Studies and Science.

__________

Translated from Sibirskiĭ Matematicheskiĭ Zhurnal, Vol. 49, No. 4, pp. 768–785, July–August, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garbaliauskienė, V., Genys, J. & Laurinčikas, A. Discrete universality of the L-functions of elliptic curves. Sib Math J 49, 612–627 (2008). https://doi.org/10.1007/s11202-008-0058-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11202-008-0058-0

Keywords

Navigation