Skip to main content

Advertisement

Log in

RTM-based omission error corrections for global geopotential models: Case study in Central Europe

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

The aim of this paper is to evaluate the effects of residual terrain model (RTM) on potential and on gravity and to point out how significant can the omission error of global geopotential models (GGMs) be and how it can influence their testing. The RTM for Central Europe is computed in the spherical approximation. The topography is modelled by spherical tesseroids and the gravitational effect of the topography is obtained as a sum of their partial gravitational effects. A detailed picture of RTM in Slovakia is shown. The testing of GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) global geopotential models in Central Europe published earlier is re-evaluated with the more rigorous omission error estimation. Experimental results show significantly better agreement between the gravity anomalies computed from global geopotential models with the omission-error estimation and gravity anomalies obtained from the direct measurements. On the other hand, for height anomalies such an improvement is not observed. The results are discussed in context of the other previously published studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altamimi Z., Collilieux X., Legrand J., Garayt B. and Boucher C., 2007. ITRF2005: A new release of the International Terrestrial Reference Frame based on time series of station positions and Earth Orientation Parameters. J. Geophys. Res., 112, B09401, DOI: 10.1029/2007JB004949.

    Article  Google Scholar 

  • Boucher C. and Altamimi Z., 1992. The EUREF terrestrial reference system and its first realizations. Veröffentlichungen der Bayerischen Kommission für die Internationale Erdmessung, 52, 205–213, München, Germany.

    Google Scholar 

  • Bruinsma S.L., Marty J.C. and Balmino G., 2004. Numerical simulation of the gravity field recovery from GOCE mission data. In: Proceedings of the 2nd International GOCE User Workshop. ESA SP-569, European Space Agency, Noordwijk, The Netherlands, ISBN 92-9092-880-8 (http://earth.esa.int/goce04/goce_proceedings/27_bruinsma.pdf).

    Google Scholar 

  • Bruinsma S.L., Marty J.C., Balmino G., Biancale R., Förste C., Abrikosov O. and Neumeyer H., 2010. GOCE gravity field recovery by means of the direct numerical method. In: Lacoste-Francis H. (Ed.), Proceedings of ESA Living Planet Symposium. ESA SP-686, European Space Agency, Noordwijk, The Netherlands, ISBN 978-92-9221-250-6.

    Google Scholar 

  • Bruinsma S.L., Foerste C., Abrikosov O., Marty J.C., Rio M.H., Mulet S. and Bonvalot S., 2013. The new ESA satellite-only gravity field model via the direct approach. Geophys. Res. Lett., 40, 3607–3612, DOI: 10.1002/grl.50716.

    Article  Google Scholar 

  • Bucha B. and Janák J., 2013. A MATLAB-based graphical user interface program for computing functionals of the geopotential up to ultra-high degrees and orders. Comput. Geosci., 56, 186–196, DOI: 10.1016/j.cageo.2013.03.012.

    Article  Google Scholar 

  • Farr T.G., Rosen P.A., Caro E., Crippen R., Duren R., Hensley S., Kobrick M., Paller M., Rodriguez E., Roth L., Seal D., Shaffer S., Shimada J., Umland J., Werner M., Oskin M., Burbank D. and Alsdorf D., 2007. The shuttle radar topography mission. Rev. Geophys., 45, RG2004, DOI: 10.1029/2005RG000183.

    Article  Google Scholar 

  • Forsberg R., 1984. A Study of Terrain Reductions, Density Anomalies and Geophysical Inversion Methods in Gravity field Modelling. Report 355. Department of Geodetic Science and Surveying, Ohio State University, Columbus, OH.

  • Forsberg R., 1994. Terrain Effects in Geoid Computations. Lecture Notes for the International School for the Determination and Use of the Geoid. IGeS-DIIAR - Politecnico di Milano, Milano, Italy.

    Google Scholar 

  • Förste C., Bruinsma S.L., Abrikosov O., Lemoine J.M., Marty J.C., Flechtner F., Balmino G., Barthelmes F. and Biancale R., 2014. EIGEN-6C4: The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse. GFZ Data Services (http://doi.org/10.5880/icgem.2015.1).

    Google Scholar 

  • Grombein T., Seitz K. and Heck B., 2013. Optimized formulas for the gravitational field of a tesseroid. J. Geodesy, 87, 645–660, DOI: 10.1007/s00190-013-0636-1.

    Article  Google Scholar 

  • Heck B., 2003. On Helmert’s methods of condensation. J. Geodesy, 77, 155–170.

    Article  Google Scholar 

  • Heck B. and Seitz K., 2007. A comparison of the tesseroid, prism and point mass approaches for mass reductions in gravity field modelling. J. Geodesy, 81, 121–136.

    Article  Google Scholar 

  • Heiskanen W.A. and Moritz H., 1967. Physical Geodesy. Freeman, San Francisco, CA.

    Google Scholar 

  • Hirt C., Kuhn M., Claessens S., Pail R., Seitz K. and Gruber T., 2014. Study of the Earth's shortscale gravity field using the ERTM2160 gravity model. Comput. Geosci., 73, 71–80, DOI: 10.1016/j.cageo.2014.09.00.

    Article  Google Scholar 

  • Hirt C., Claessens S., Fecher T., Kuhn M., Pail R. and Rexer M., 2013. New ultra-high resolution picture of Earth’s gravity field. Geophys. Res. Lett., 40, 1–5. DOI: 10.1002/grl.50838.

    Article  Google Scholar 

  • Hirt C., 2013. RTM gravity forward-modeling using topography/bathymetry data to improve highdegree global geopotential models in the coastal zone. Mar. Geod., 36, 183–202. DOI: 10.1080/01490419.2013779334.

    Article  Google Scholar 

  • Hirt C., Featherstone W. E. and Marti U., 2010. Combining EGM2008 and SRTM/DTM2006.0 residual terrain model data to improve quasigeoid computations in mountainous areas devoid of gravity data. J. Geodesy, 84, 557–567.

    Article  Google Scholar 

  • Janák J. and Pitonák M., 2011. Comparison and testing of GOCE global gravity models in Central Europe. J. Geod.c Sci., 1, 333–347.

    Google Scholar 

  • Kadlec M., 2011. Refining Gravity Field Parameters by Residual Terrain Modelling. Ph.D. Thesis. University of West Bohemia, Pilsen, Czech Republic.

    Google Scholar 

  • Kaula W.M., 1959. Statistical and harmonic analysis of gravity. J. Geophys. Res., 64, 2401–2421.

    Article  Google Scholar 

  • Klobušiak M. and Pecár J., 2004. Model and algorithm of effective processing of gravity measurements performed with a group of absolute and relative gravimeters. Geodetický a kartografický obzor, 50(92), 99–110 (in Slovak).

    Google Scholar 

  • Mader K., 1951. Das Newtonsche Raumpotential prismatischer Körper und seine Ableitungen bis zur dritten Ordnung. Österreichische Zeitschrift für Vermessungswesen, Sonderheft 11 (in German).

    Google Scholar 

  • Martinec Z., 1998. Boundary Value Problems for Gravimetric Determination of a Precise Geoid. Lecture Notes in Earth Sciences, 73. Springer-Verlag, Berlin, Germany.

    Google Scholar 

  • Martinec Z. and Vanícek S., 1994. The indirect effect of topography in the Stokes-Helmert technique for a spherical approximation of the geoid. Manuscr. Geod., 19, 213–219.

    Google Scholar 

  • Migliaccio F., Reguzzoni M., Sansó F., Tscherning C.C. and Veicherts M., 2010. GOCE data analysis: the space-wise approach and the first space-wise gravity field model. In: Lacoste-Francis H. (Ed.), Proceedings of ESA Living Planet Symposium. ESA SP-686, European Space Agency, Noordwijk, The Netherlands, ISBN 978-92-9221-250-6 (http://www.cct.gfy.ku.dk/publ_cct/cct2009.pdf).

    Google Scholar 

  • Migliaccio F., Reguzzoni M., Gatti A., Sanso F. and Herceg M., 2011. A GOCE-only global gravity field model by the space-wise approach. In: Proceedings of the 4th International GOCE User Workshop. ESA SP-696, European Space Agency, Noordwijk, The Netherlands, ISBN 978- 92-9092-260-5.

    Google Scholar 

  • Mikuška J., Pašteka R. and Marušiak I., 2006. Estimation of distant relief effect in gravimetry. Geophysics, 71, J59–J69.

    Article  Google Scholar 

  • Nagy D., 1966. The gravitational attraction of a right rectangular prism. Geophysics, 31, 362–371.

    Article  Google Scholar 

  • Nagy D., Papp G. and Benedek J., 2000. The gravitational potential and its derivatives for the prism. J. Geodesy, 74, 552–560, DOI: 10.1007/s001900000116.

    Article  Google Scholar 

  • Nagy D., Papp G. and Benedek J., 2002. Corrections to “The gravitational potential and its derivatives for the prism”. J. Geodesy, 76, 475, DOI: 10.1007/s00190-002-0264-7).

    Article  Google Scholar 

  • Novák P., Vanícek P., Martinec Z. and Véronneau M., 2001. Effects of the spherical terrain on gravity and the geoid. J. Geodesy, 75, 491–504, DOI: 10.1007/s001900100201.

    Article  Google Scholar 

  • Omang O.C., Tscherning C.C. and Forsberg R., 2012. Generalizing the harmonic reduction procedure in residual topographic modeling. In: Sneeuw N., Novák P., Crespiand, Sansò (Eds.), Proceedings of the VII Hotine-Marussi Symposium on Mathematical Geodesy. International Association of Geodesy Symposia, 137, 233–238. Springer-Verlag, Heidelberg, Germany.

    Article  Google Scholar 

  • Pail R., Goiginger H., Mayrhofer R., Schuh W.-D., Brockmann J.M., Krasbutter I., Höck E. and Fecher T., 2010. GOCE global gravity field model derived from orbit and gradiometry data applying the time-wise method. In: Lacoste-Francis H. (Ed.), Proceedings of ESA Living Planet Symposium. ESA SP-686, European Space Agency, Noordwijk, The Netherlands, ISBN 978-92-9221-250-6 (www.espace-tum.de/mediadb/910370/910371/pail10.pdf).

    Google Scholar 

  • Pail R., Bruinsma S.L., Migliaccio F., Foerste C., Goiginger H., Schuh W.D, Hoeck E, Reguzzoni M., Brockmann J.M, Abrikosov O., Veicherts M., Fecher T., Mayrhofer R., Krasbutter I., Sanso F. and Tscherning C.C., 2011. First GOCE gravity field models derived by three different approaches. J. Geodesy, 85, 819–843, DOI: 10.1007/s00190-011-0467-x.

    Article  Google Scholar 

  • Pavlis N.K., Factor J.K. and Holmes S.A., 2007. Terrain-related gravimetric quantities computed for the next EGM. Proceedings of the 1st International Symposium of the International Gravity Field Service “Gravity field of the Earth”. Harita Dergisi, Special Issue 18, General Command of Mapping, Istanbul, Turkey, 318–323 (http://earth-info.nga.mil/GandG/wgs84/gravitymod/new_egm/EGM08_papers/NPavlis%26al_S8_Revised111606.pdf).

    Google Scholar 

  • Pavlis N.K., Holmes S.A., Kenyon S.C. and Factor J.K., 2012. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J. Geophys. Res., 117, B04406, DOI: 10.1029/2011JB008916

    Article  Google Scholar 

  • Rülke A., Liebsch G., Sacher M., Schäfer U., Schirmer U. and Ihde J., 2012. Unification of European height system realizations. J. Geod. Sci., 2, 343–354, DOI: 10.2478/v10156-011-0048-1.

    Google Scholar 

  • Tsoulis D., 1999. Analytical and Numerical Methods in Gravity Feld Modelling of Ideal and Real Masses. Deutsche Geodätische Kommission, Reihe C, Heft Nr 510, München, Germany.

    Google Scholar 

  • Vanícek P., Tenzer R., Sjöberg L.E., Martinec Z. and Featherstone W.E., 2004. New views of the spherical Bouguer gravity anomaly. Geophys. J. Int., 159, 460–472.

    Article  Google Scholar 

  • Vykutil J., 1959. Computation of gravity corrections to levelling in Baltic vertical datum. Geodetický a kartografický obzor, 5(47), 145–149 (in Czech).

    Google Scholar 

  • Wild-Pfeiffer F., 2007. Auswirkungen topographisch-isostatischer Massen auf die Satellitengradiometrie. Deutsche Geodätische Kommission, C604, München, Germany (in German).

    Google Scholar 

  • Wild-Pfeiffer F., 2008. A comparison of different mass elements for use in gravity gradiometry. J. Geodesy, 82, 637–653, DOI: 10.1007/s00190-008-0219-8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuzana Ďuríčková.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ďuríčková, Z., Janák, J. RTM-based omission error corrections for global geopotential models: Case study in Central Europe. Stud Geophys Geod 60, 622–643 (2016). https://doi.org/10.1007/s11200-015-0598-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-015-0598-2

Keywords

Navigation