Skip to main content

Advertisement

Log in

Magnetic susceptibility logging of Chicxulub proximal impact breccias in the Santa Elena borehole: implications for emplacement mode

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

Magnetic susceptibility logging is used to study the impact breccias in the Chicxulub crater. The basic premise is that the high contrasts in magnetic properties can be used to characterize the breccias. The Santa Elena borehole was drilled 110 km radial distance from crater center and sampled a 172 m thick sequence of impact breccias, between 332 and 504 m depth. Breccia units are distinguished from differences in composition, size, and relative contents of clasts, type of matrix and textural and lithological assemblages, which can be resolved in the susceptibility logs. The whole-core log shows characteristic variation patterns with high, intermediate and low susceptibilities. High resolution logging of matrix and clasts records the heterogeneous nature of impactites, with higher variability at smaller spatial scales. Measurements confirm that diamagnetic susceptibilities characterize the carbonate clasts, high susceptibilities the basement granitic clasts and intermediate values the silicate melt-rich and silicate-poor matrix. Intermediate variable susceptibilities characterize breccias rich in melt particles. Correlation of matrix and clast logs with whole-core log shows that signal is controlled by the matrix. Logs for clast shows a discrete distribution with peaks of intermediate to high values, which correlate with large clast distributions. The ejecta blanket includes the fallback suevites rich in silicate melt particles and shocked minerals, the high temperature vapor deposits from ejecta curtain collapse and high velocity basal flows, and the carbonate rich deposits from lateral basal flows and secondary cratering. Late fallback suevites record minor turbulent conditions resulting from progressive cooling of the ejecta plume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alvarez W., Smit J., Lowrie W., Asaro F., Margolis S.V., Claeys P., Kastner M. and Hildebrand A.R., 1992. Proximal impact deposits at the Cretaceous-Tertiary boundary in the Gulf of Mexico: A restudy of DSDP Leg 77 Sites 536 and 540. Geology, 20, 697–700.

    Article  Google Scholar 

  • Chopra P., Papp E. and Gibson D., 2002. Geophysical well logging. In: Papp E. (Ed.), Geophysical and Remote Sensing Methods for Regolith Exploration. CRCLEME Open File Report, 144, 105–115.

    Google Scholar 

  • Collins G.S., Morgan J., Barton P., Christeson G.L., Gulick S., Urrutia-Fucugauchi J., Warner M. and Wünnemann K., 2008. Dynamic modeling suggests terrace zone asymmetry in the Chicxulub crater is caused by target heterogeneity. Earth Planet. Sci. Lett., 270, 221–230, DOI: 10.1016/j.epsl.2008.03.032.

    Article  Google Scholar 

  • Day R., Fuller M. and Schmidt V.A., 1977. Hysteresis properties of titanomagnetites: Grain size and compositional dependence. Phys. Earth Planet. Inter., 13, 260–267.

    Article  Google Scholar 

  • Dearing J., 1999, Magnetic susceptibility. In: Walden J., Oldfield F. and Smith J.P. (Eds.), Environmental Magnetism: a Practical Guide. Technical Guide No. 6, Quaternary Research Association, London, U.K., 35–62.

    Google Scholar 

  • Dunlop D.J., 2002. Theory and application of the Day plot (Mr/Ms versus Hcr/Hc). 1. Theoretical curves and tests using titanomagnetite data. J. Geophys. Res., 107(B3), DOI: 101029/2001JB000486.

    Google Scholar 

  • Ellwood B.B., Crick R.E. and El Hassani A., 1999. Magnetosusceptibility event and cyclostratigraphy (MSEC) method used in correlation of Devonian rocks from Anti-Atlas Morocco. AAPG Bull., 83, 1119–1134.

    Google Scholar 

  • Escobar-Sanchez J.E. and Urrutia-Fucugauchi J., 2010. Chicxulub crater post-impact hydrothermal activity — Evidence from the Paleocene carbonates in the Santa Elena borehole. Geofis. Int., 49, 97–106.

    Google Scholar 

  • Goldberg D., 1997. The role of downhole measurements in marine geology and geophysics. Rev. Geophys., 35, 315–342.

    Article  Google Scholar 

  • Goto K., Tada R., Tajika E., Bralower T.J., Hasegawa T. and Matsui T., 2004. Evidence for ocean water invasion into the Chicxulub crater at the Cretaceous/Tertiary boundary. Meteorit. Planet. Sci., 39, 1233–1247.

    Article  Google Scholar 

  • Gulick S., Barton P., Christeson G., Morgan J., MacDonald M., Mendoza K., Urrutia-Fucugauchi J., Vermeesch P. and Warner M., 2008. Importance of pre-impact crustal structure for the asymmetry of the Chicxulub impact crater. Nature Geosci., 1, 131–135.

    Article  Google Scholar 

  • Hearst J.R., Nelson P.H. and Paillett F.L., 2000. Well Logging for Physical Properties. John Wiley & Sons, Chichester.

    Google Scholar 

  • Hildebrand A.R., Penfield G.T., Kring D.A., Pilkington M., Camargo-Zanoguera A. and Jacobsen S.B., 1991. Chicxulub crater: A possible Cretaceous/Tertiary boundary impact crater on the Yucatán Peninsula, Mexico. Geology, 19, 867–871.

    Article  Google Scholar 

  • Hildebrand A., Pilkington M., Ortiz C., Chavez R., Urrutia-Fucugauchi J., Connors M., Graniel E., Camara-Zi A., Halpenny J.F. and Niehaus D., 1998. Mapping Chicxulub crater structure with gravity and seismic reflection data. In: Graddy M.M., Hutchinson R., McCall G.J.H. and Rotherby D.A. (Eds.), Meteorites: Flux With Time and Impact Effects. Geol. Soc. London Spec. Publ., 140, 153–173.

    Google Scholar 

  • Hörz F., Ostertag R. and Rainey D.A., 1983. Bunte breccia of the Ries: Continuous deposits of large impact craters. Rev. Geophys. Space Phys., 21, 1667–1725.

    Article  Google Scholar 

  • Krammer K., 1990. Magnetic susceptibility log measured in Hole 395A, Leg 109. In: Detrick R., Honnorez J., Bryan W.B., Juteau T. et al., (Eds), Proceedings of the Ocean Drilling Program, Scientific Results, 106/109, 231–235.

    Google Scholar 

  • Kring D.A., Horz L., Zurcher L. and Urrutia-Fucugauchi J., 2004. Impact lithologies and their emplacement in the Chicxulub impact crater: Initial results from the Chicxulub scientific drilling project, Yaxcopoil, Mexico. Meteorit. Planet. Sci., 39, 879–897.

    Article  Google Scholar 

  • McNeill J.D., Hunter J.A. and Bosnar M., 1996. Application of a borehole induction magnetic susceptibility logger to shallow lithological mapping. J. Environ. Eng. Geophys., 2, 77–90.

    Article  Google Scholar 

  • Morgan J.V., Warner M. and Chicxulub Group, 1997. Size and morphology of the Chicxulub impact crater. Nature, 390, 472–476.

    Article  Google Scholar 

  • Morgan J.V., Warner M., Collins G.S., Melosh H.J. and Christenson G.L., 2000. Peak-ring formation in large impact craters: geophysical constraints from Chicxulub. Earth Planet. Sci. Lett., 183, 347–354.

    Article  Google Scholar 

  • Morgan J.V., Warner M., Urrutia-Fucugauchi J., Gulick S., Christeson G.L., Barton P., Rebolledo M. and Melosh J., 2005. Chicxulub crater seismic survey prepares way for future drilling. EOS Trans. AGU, 86(36), 325.

    Article  Google Scholar 

  • Natland J.H., 2002. Magnetic susceptibility as an index of the lithology and composition of gabbro, ODP Leg 176, Hola 735B, southwest Indian ridge. In: Natland J.H., Dick H.J.B., Miller D.J. and Von Herzen R.P. (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results, 176, DOI: doi:10.2973/odp.proc.sr.176.008.2002.

  • Nowaczyk N.R., 2001. Logging of magnetic susceptibility. In: Last W.M. and Smol J.P. (Eds.), Tracking Environmental Changes in Lake Sediments: Basin Analysis, Coring, and Chronological Techniques. Kluwer Academic Publishers, Dordrecht, The Netherlands, 155–170.

    Google Scholar 

  • Ortiz-Aleman C. and Urrutia-Fucugauchi J., 2010. Aeromagnetic anomaly modeling of central zone structure and magnetic sources in the Chicxulub crater. Phys. Earth Planet. Inter., 179, 127–138, DOI: 10.1016/j.pepi.2010.01.007.

    Article  Google Scholar 

  • Pope K.O., Ocampo A.C., Fischer A.G., Vega F.J., Ames D.E., King D.T. Jr., Fouke B.W., Wachtman R.J. and Kletetschka G., 2005, Chicxulub impact ejecta deposits in southern Quintana Roo, Mexico, and central Belize. In: Kenkmann T., Hörz F. and Deutsch A. (Eds.), Large Meteorite Impacts III. Geol. Soc. Am. Spec. Pap., 384, 171–190.

    Chapter  Google Scholar 

  • Rebolledo-Vieyra M. and Urrutia-Fucugauchi J. 2006. Magnetostratigraphy of the Cretaceous/Tertiary boundary and Early Paleocene sedimentary sequence from the Chicxulub impact crater. Earth Planets Space, 58, 1309–1314.

    Google Scholar 

  • Rebolledo-Vieyra M., Urrutia-Fucugauchi J., Marin L. Trejo A., Sharpton V.L. and Soler A.M., 2000. UNAM scientific shallow-drilling program of the Chicxulub impact crater. Int. Geol. Rev., 42, 928–940.

    Article  Google Scholar 

  • Sagnotti L., Rochette P., Jackson M., Vadeboin F., Dinarès-Turell J., Winkler A. and Mag-Net Science Team, 2003. Inter-laboratory calibration of low-field magnetic and anhysteretic susceptibility measurements. Phys. Earth Planet. Inter., 138, 25–38

    Article  Google Scholar 

  • Salge T., 2007. The ejecta blanket of the Chicxulub impact crater: Petrographic and chemical studies of the K-P section of El Guayal and of the UNAM boreholes. Lunar Planet. Sci., XXXVIII, 1748, http://www.lpi.usra.edu/meetings/lpsc2007/pdf/1748.pdf.

    Google Scholar 

  • Schulte P., Alegret L., Arenilla I., Arz J.A., Barton P.J., Bown P.R., Bralower T.J., Christeson G.L., Claeys P., Cockell C.S., Collins G.S., Deutsch A., Goldin T.J., Goto K., Grajales-Nishimura J.M., Grieve R.A.F., Gulick S.P.S., Johnson K.R., Kiessling W., Koeberl C., Kring D.A., MacLeod K.G., Matsui T., Melosh J., Montanari A., Morgan J.V., Neal C.R., Nichols D.J., Norris R.D., Pierazzo E., Ravizza R., Rebolledo-Vieyra M., Reimold W.U., Robin R., Salge T., Speijer R.P., Sweet A.R., Urrutia-Fucugauchi J., Vajda V., Whalen M.T. and Willumsen P.S., 2010. The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science, 327, 1214–1218.

    Article  Google Scholar 

  • Sharpton V.L., Dalrymple G., Marin L., Ryder G., Schuraytz B. and Urrutia-Fucugauchi J., 1992. New links between the Chicxulub impact structure and the Cretaceous/Tertiary boundary. Nature, 359, 819–821.

    Article  Google Scholar 

  • Sharpton V.L., Burke K., Camargo-Zanoguera A., Hall S., Marin L. and Urrutia-Fucugauchi J., 1993. Chicxulub multiring impact basin: Size and other characteristics derived from gravity analysis. Science, 261, 1564–1567

    Article  Google Scholar 

  • Stöffler D., Artemieva N.A., Ivanov B.A., Hecht L., Kenkemann T., Schmitt R.T., Tagle R.A. and Wittmann A., 2004. Origin and emplacement of the impact formations at Chicxulub, Mexico, as revealed by the ICDP deep drilling at Yaxcopoil-1 and by numerical modeling. Meteorit. Planet. Sci., 39, 1035–1067.

    Article  Google Scholar 

  • Urrutia-Fucugauchi J., Marin L. and Trejo A., 1996. UNAM scientific drilling program of Chicxulub impact structure — Evidence for a 300 kilometer crater diameter. Geophys. Res. Lett., 23, 1565–1568.

    Article  Google Scholar 

  • Urrutia-Fucugauchi J., Morgan J., Stöffler D. and Claeys P., 2004. The Chicxulub scientific drilling project (CSDP). Meteorit. Planet. Sci., 39, 787–790.

    Article  Google Scholar 

  • Urrutia-Fucugauchi J. and Pérez-Cruz L., 2007. Deep drilling into the Chicxulub impact crater: Pemex oil exploration boreholes revisited. American Geophysical Union, Spring Meeting 2007, abstract #U33A-07.

    Google Scholar 

  • Urrutia-Fucugauchi J. and Pérez-Cruz L., 2008. Post-impact carbonate deposition in the Chicxulub impact crater region, Yucatan platform, Mexico. Curr. Sci., 95, 241–252.

    Google Scholar 

  • Urrutia-Fucugauchi J., Chavez-Aguirre J.M., Pérez-Cruz L. and de la Rosa J.L., 2008. Impact ejecta and carbonate sequence in the eastern sector of Chicxulub Crater. Comptes Rendus Geosci., 341, 801–810, DOI: 10.1016 /j.crte.2008.09.001.

    Article  Google Scholar 

  • Urrutia-Fucugauchi J. and Pérez-Cruz L., 2009. Multiring-forming large bolide impacts and evolution of planetary surfaces. Int. Geol. Rev., 51, 1079–1102.

    Article  Google Scholar 

  • Urrutia-Fucugauchi J., Camargo-Zanoguera A., Pérez-Cruz L. and Pérez-Cruz G., 2011. The Chicxulub multiring impact crater, Yucatan carbonate platform, Mexico. Geofis. Int., 50, 99–127.

    Google Scholar 

  • Urrutia-Fucugauchi J., Delgadillo-Peralta M., Pérez-Cruz L. and Velasco-Villarreal M., 2012. Heating-induced changes in the anisotropy of magnetic susceptibility of impact breccias, Chicxulub crater (Mexico). Stud. Geophys. Geod., 56, 769–787.

    Article  Google Scholar 

  • Von Engelhardt W., 1990. Distribution, petrography, and shock metamorphism of the ejecta of the Ries crater in Germany — A review. Tectonophysics, 171, 259–273.

    Article  Google Scholar 

  • Wittmann A., Kenkemann T., Hecht L. and Stöffler D., 2007. Reconstruction of the Chicxulub ejecta plume from its deposits in drill core Yaxcopoil-1. Geol. Soc. Am. Bull., 119, 1151–1167.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaime Urrutia-Fucugauchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Urrutia-Fucugauchi, J., Pérez-Cruz, L., Campos-Arriola, S.E. et al. Magnetic susceptibility logging of Chicxulub proximal impact breccias in the Santa Elena borehole: implications for emplacement mode. Stud Geophys Geod 58, 100–120 (2014). https://doi.org/10.1007/s11200-013-0803-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-013-0803-0

Keywords

Navigation