Skip to main content
Log in

Heating-induced changes in the anisotropy of magnetic susceptibility of impact breccias, Chicxulub Crater (Mexico)

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

Initial results of a thermal treatment study on the anisotropy of magnetic susceptibility (AMS) of impact breccias from Chicxulub crater are used to investigate the nature of the magnetic fabrics. Chicxulub impact breccias are heterogeneous materials, with carbonate, basement and melt clasts within carbonate-rich or melt-rich matrix. Samples studied come from the carbonate-rich basal unit Lower Suevite in the Yaxcopoil-1 borehole impactite sequence (core depth interval: 885–895 m). The Lower Suevite is characterized by mixed prolate and oblate ellipsoids with shallow to steep principal susceptibility axes, which had been related to emplacement as an excavation flow with ground-surge components during the early cratering stages. Thermal treatment results in changes in the fabrics with a tendency to oblate fabrics. Stepwise thermal treatment up to 700°C reveals different behaviors for the oblate, neutral and prolate fabrics marked by changes in AMS parameters and principal susceptibility axis orientations. A sample with oblate fabrics and vertical minimum axes showed an increase of magnetic susceptibility at high temperatures, indicating formation of secondary magnetite and fabric enhancement. A sample with neutral ellipsoid showed heating-induced changes towards oblate fabrics and vertical minimum susceptibility axes. Samples characterized by prolate ellipsoids with horizontal maximum axes showed no directional changes. In a sample with apparent intermediate or inverse fabrics, vertical maximum axes showed changes to horizontal inclinations, with the intermediate and maximum axes switching positions. Changes induced by stepwise thermal treatment appear useful to characterize the fabrics of impact lithologies. Further investigation of heating-induced effects in mineralogy, grain size and textural changes is, however, required to relate the different behaviors observed after stepwise thermal treatment with the magnetic mineralogy and emplacement mode of the breccias.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Borradaile G.J. and Lagroix F., 2000. Thermal enhancement of magnetic fabrics in high grade gneisses. Geophys. Res. Lett., 27, 2413–2416.

    Article  Google Scholar 

  • Cagnoli B. and Tarling D.H., 1997. The reliability of anisotropy of magnetic susceptibility (AMS) data as flow indicators in friable base surge and ignimbrite deposits: Italian examples. J. Volcanol. Geotherm. Res., 75, 309–320.

    Article  Google Scholar 

  • Collins G.S., Morgan J., Barton P., Christeson G.L., Gulick S., Urrutia-Fucugauchi J., Warner M. and Wünnemann K., 2008. Dynamic modeling suggests terrace zone asymmetry in the Chicxulub crater is caused by target heterogeneity. Earth Planet. Sci. Lett., 270, 221–230.

    Article  Google Scholar 

  • Day R., Fuller M.D. and Schmidt V.A., 1977. Hysteresis properties of titanomagnetites: grain size and composition dependence. Phys. Earth Planet. Inter., 13, 260–266.

    Article  Google Scholar 

  • Delgadillo-Peralta M., Urrutia-Fucugauchi J., Pérez-Cruz L. and Velasco-Villarreal M., 2011. Magnetic fabrics of carbonate-rich breccias from the Chicxulub impact crater. Adv. Geosci. (in print).

  • Dunlop D.J., 2002. Theory and application of the Day plot (Mr/Ms versus Hcr/Hc). 1. Theoretical curves and tests using titanomagnetite data. J. Geophys. Res., 107(B3), DOI: 101029 /2001JB000486.

    Google Scholar 

  • Elwood B.B., Burkart B., Rajeshwar K. and Darwin R., 1989. Are the iron carbonate minerals, ankerite and ferroan dolomite, like siderite, important in paleomagnetism? J. Geophys. Res., 94(B6), 7321–7331.

    Article  Google Scholar 

  • Ferré E.C., 2002. Theoretical models of intermediate and inverse AMS fabrics. Geophys. Res. Lett., 29, 1127, DOI: 10.1029/2001GL014367.

    Article  Google Scholar 

  • Henry B., Jordanova D., Jordanova N., Souque C. and Robion P., 2003. Anisotropy of magnetic susceptibility of heated rocks. Tectonophysics, 366, 241–258.

    Article  Google Scholar 

  • Henry B., Jordanova D., Jordanova N. and Le Goff M., 2005. Transformations of magnetic mineralogy in rocks revealed by difference of hysteresis loops measured after stepwise heating: theory and case studies. Geophys. J. Int., 162, 64–78.

    Article  Google Scholar 

  • Hrouda F. and JelÍnek V., 1990. Resolution of ferromagnetic and paramagnetic anisotropies in rocks, using combined low-field and high-field measurements. Geophys. J. Int., 103, 75–84.

    Article  Google Scholar 

  • Hrouda F. and Schulmann K., 1990. Conversion of the magnetic anisotropy tensor into the orientation tensor in some rocks. Phys. Earth Planet. Inter., 63, 71–77.

    Article  Google Scholar 

  • Hrouda F., Stephenson A. and Woltar L., 1983. On the standardization of measurements of the anisotropy of magnetic susceptibility. Phys. Earth Planet. Inter., 32, 303–308.

    Article  Google Scholar 

  • Hrouda F., Henry B. and Borradaile G., 2000. Limitations of tensor subtraction in isolating diamagnetic fabrics by magnetic anisotropy. Tectonophysics, 322, 303–310.

    Article  Google Scholar 

  • Jelínek V., 1981. Characterization of the magnetic fabric of rocks. Tectonophysics, 79, 63–67.

    Article  Google Scholar 

  • Just J. and Kontny A., 2012. Thermally induced alterations of minerals during measurements of the temperature dependence of magnetic susceptibility: a case study from the hydrothermally altered Soultz-sous-Forêts granite, France. Int. J. Earth Sci., DOI: 10.1007/s00531-011-0668-9.

  • Kontny A., Fruhauf P. and Elbra T., 2008. Rock magnetic properties and magnetic fabric of impact and basement lithologies of the Chesapeake Bay impact structure. Geotect. Res., 3, 89–91.

    Google Scholar 

  • Kring D.A., Horz F., Zurcher L. and Urrutia-Fucugauchi J., 2004. Impact lithologies and their emplacement in the Chicxulub impact crater: Initial results from the Chicxulub scientific drilling project, Yaxcopoil, Mexico. Meteorit. Planet. Sci., 39, 879–897.

    Article  Google Scholar 

  • MacDonald W.D. and Palmer H.C., 1990. Flow directions in ash-flow tuffs: a comparison of geological and magnetic susceptibility measurements, Tshirege member (upper Bandelier Tuff), Valles caldera, New Mexico, USA. Bull. Volcanol., 53, 45–59.

    Article  Google Scholar 

  • Martín-Hernández F. and Ferré E.C., 2007. Separation of paramagnetic and ferrimagnetic anisotropies: A review. J. Geophys. Res., 112, B03105, DOI: 10.1029/2006JB004340.

    Article  Google Scholar 

  • Misra S., Arif M., Basavaiah N., Srivastava P.K. and Dube A., 2010. Structural and anisotropy of magnetic susceptibility (AMS) evidence for oblique impact on terrestrial basalt flows: Lonar crater, India. Geol. Soc. Am. Bull., 122, 563–574.

    Article  Google Scholar 

  • Ortiz-Aleman C. and Urrutia-Fucugauchi J., 2010. Aeromagnetic anomaly modeling of central zone structure and magnetic sources in the Chicxulub crater. Phys. Earth Planet. Inter., 179, 127–138, DOI: 10.1016/j.pepi.2010.01.007.

    Article  Google Scholar 

  • Palmer H.C. and MacDonald W.D., 1999. Anisotropy of magnetic susceptibility in relation to source vents of ignimbrites: empirical observations. Tectonophysics, 307, 207–218.

    Article  Google Scholar 

  • Potter D.K. and Stephenson A., 1988. Single-domain particles in rocks and magnetic fabric analysis. Geophys. Res. Lett., 15, 1097–1100.

    Article  Google Scholar 

  • Rochette P. and Fillion C., 1988. Identification of multicomponent anisotropies in rocks using various field and temperature values in a cryogenic magnetometer. Phys. Earth Planet. Inter., 51, 379–386.

    Article  Google Scholar 

  • Rochette P., Jackson M. and Aubourg C., 1992. Rock magnetism and interpretation of anisotropy of magnetic susceptibility. Rev. Geophys., 30, 209–226.

    Article  Google Scholar 

  • Schulte P., Alegret L., Arenilla I, Arz J.A., Barton P.J., Bown P.R., Bralower T.J., Christeson G.L., Claeys P., Cockell C.S., Collins G.S., Deutsch A., Goldin T.J., Goto K., Grajales-Nishimura J.M., Grieve R.A.F., Gulick S.P.S., Johnson K.R., Kiessling W., Koeberl C., Kring D.A., MacLeod K.G., Matsui T., Melosh J., Montanari A., Morgan J.V., Neal C.R., Nichols D.J., Norris R.D., Pierazzo E., Ravizza R., Rebolledo-Vieyra M., Reimold W.U., Robin R., Salge T., Speijer R.P., Sweet A.R., Urrutia-Fucugauchi J., Vajda V., Whalen M.T. and Willumsen P.S., 2010. The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science, 327, 1214–1218.

    Article  Google Scholar 

  • Scott R.G. and Spray J.G., 1999. Magnetic fabric constraints on friction melt flow regimes and ore emplacement direction within the South Range breccia belt, Sudbury impact structure. Tectonophysics, 307, 163–189.

    Article  Google Scholar 

  • Scott R.G. and Benn K., 2001. Peak-ring rim collapse accommodated by impact melt-filled transfer faults, Sudbury impact structure, Canada. Geology, 29, 747–750.

    Article  Google Scholar 

  • Sharpton V.L., Dalrymple G., Marin L., Ryder G., Schuraytz B. and Urrutia-Fucugauchi J., 1992. New links between the Chicxulub impact structure and the Cretaceous/Tertiary boundary. Nature, 359, 819–821.

    Article  Google Scholar 

  • Shuvalov V., 2003. Displacement of target material during impact cratering. In: Koeberl C. and Martinez-Ruiz F. (Eds), Impact Markers in the Stratigraphic Record (Impact Studies). Springer-Verlag, Heidelberg, Germany, 121–135.

    Chapter  Google Scholar 

  • Stoeffler D., Artimieva N.A. and Ivanov B.A., 2004. Origin and emplacement of the impact formations at Chicxulub, Mexico, as reveled by the ICDP deep drilling at Yaxcopoil-1 and by numerical modeling. Meteorit. Planet. Sci., 39, 1035–1067.

    Article  Google Scholar 

  • Tarling D.H. and Hrouda F., 1993. The Magnetic Anisotropy of Rocks. Chapman and Hall, London, U.K., 217 pp.

    Google Scholar 

  • Trindade R.I.F., Mintsa M. and Bouchez J.L., 2001. Thermally enhanced mimetic fabric of magnetite in a biotite granite. Geophys. Res. Lett., 28, 2687–2690.

    Article  Google Scholar 

  • Tuchscherer M.G., Reimold W.U., Koeberl C., Gibson R.L. and de Bruin D., 2004. First petrographic results on impactites from the Yaxcopoil-1 borehole, Chicxulub structure, Mexico. Meteorit. Planet. Sci., 39, 899–930.

    Article  Google Scholar 

  • Urrutia-Fucugauchi J., 1981. Preliminary results on the effects of heating on the magnetic susceptibility anisotropy of rocks. J. Geomagn. Geoelectr., 33, 411–419.

    Article  Google Scholar 

  • Urrutia-Fucugauchi J., 2007. Anisotropy of magnetic susceptibility, effects of heating. In: Gubbins D. and Herrero-Bervera E. (Eds), Encyclopedia of Paleomagnetism and Geomagnetism. Springer-Verlag, Berlin, Germany, 560–564.

    Chapter  Google Scholar 

  • Urrutia-Fucugauchi J. and Pérez-Cruz L., 2009. Multiring-forming large bolide impacts and evolution of planetary surfaces. Int. Geol. Rev., 51, 1079–1102.

    Article  Google Scholar 

  • Urrutia-Fucugauchi J., Morgan J.V., Stoeffler D. and Claeys P., 2004a. The Chicxulub Scientific Drilling Project (CSDP). Meteorit. Planet. Sci., 39, 787–790.

    Article  Google Scholar 

  • Urrutia-Fucugauchi J., Soler A.M., Rebolledo-Vieyra M. and Vera P., 2004b. Paleomagnetic and rock magnetic study of the Yaxcopoil-1 impact breccia sequence, Chicxulub impact crater (Mexico). Meteorit. Planet. Sci., 39, 843–856.

    Article  Google Scholar 

  • Urrutia-Fucugauchi J., Chavez-Aguirre J.M., Pérez-Cruz L. and de la Rosa, J.L., 2008. Impact ejecta and carbonate sequence in the eastern sector of Chicxulub crater. C. R. Geosci., 341, 801–810, DOI: 10.1016/j.crte.2008.09.001.

    Article  Google Scholar 

  • Urrutia-Fucugauchi J., Camargo-Zanoguera A., Pérez-Cruz L. and Pérez-Cruz G., 2011. The Chicxulub multiring impact crater, Yucatan carbonate platform, Mexico. Geofis. Int., 50, 99–127.

    Google Scholar 

  • Van Velzen A.J. and Zijderveld J.D.A., 1992. A method to study alterations of magnetic minerals during thermal demagnetization applied to a fine-grained marine marl (Trubi formation, Sicily). Geophys. J. Int., 110, 79–90.

    Article  Google Scholar 

  • Velasco-Villarreal M., Urrutia-Fucugauchi J., Rebolledo-Vieyra M. and Pérez-Cruz L., 2011. Paleomagnetism of impact breccias from the Chicxulub crater — Implications for ejecta emplacement and hydrothermal processes. Phys. Earth Planet. Inter., 186, 154–171.

    Article  Google Scholar 

  • Wittmann A., Kenkmann T., Hecht L. and Stoeffler D., 2007. Reconstruction of the Chicxulub ejecta plume from its deposits in drill core Yaxcopoil-1. Geol. Soc. Am. Bull., 119, 1151–1167.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaime Urrutia-Fucugauchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Urrutia-Fucugauchi, J., Delgadillo-Peralta, M., Pérez-Cruz, L. et al. Heating-induced changes in the anisotropy of magnetic susceptibility of impact breccias, Chicxulub Crater (Mexico). Stud Geophys Geod 56, 769–787 (2012). https://doi.org/10.1007/s11200-010-0292-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-010-0292-3

Keywords

Navigation