Skip to main content
Log in

Multi-station superposition for magnetotelluric signal

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

Extending the observation time to increase the length of time series is the most effective but consuming way to improve the signal-to-noise ratio of magnetotelluric (MT) signal. Multi-station superposition technique at present proposed for magnetotelluric survey aims to attenuate random noises by multi-station synchronously observation at one site. The idea stems from seismic array stacking and is mathematically verified corresponding to a linear random noise model. The multi-station superposition can be done in time and frequency domains. A practical testing measurement was performed by setting three stations on vertexes of an equilateral triangle and a single station on centre of the triangle in desert area of the Tarim basin, western China. The results of the testing data demonstrate the effectiveness of the proposed scheme. The method has great potentials for long-period MT survey in dramatically reducing the observation time and suppressing the static shift caused by near-surface inhomogeneities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  • Booker J.R., Favetto A. and Pomposiello M.C., 2004. Low electrical resistivity associated with plunging of the Nazca flat slab beneath Argentina. Nature, 429, 399–403.

    Article  Google Scholar 

  • Chave A.D. and Thomson D.J., 1989. Some commends on magnetotelluric response function estimation. J. Geophys. Res., 94, 14215–14226.

    Article  Google Scholar 

  • Chen L., Booker J.R., Jones A.G., Wu N., Unsworth M.J., Wei W. and Tan H., 1996. Electrically conductive crust in southern Tibet from INDEPTH magnetotelluric surveying. Science, 274, 1694–1696.

    Article  Google Scholar 

  • Egbert G.D. and Booker J.R., 1986. Robust estimation of geomagnetic transfer functions. Geophys. J. R. Astron. Soc., 87, 173–194.

    Article  Google Scholar 

  • Egbert G.D., 2002. Processing and interpretation electromagnetic induction array data. Surv. Geophys., 23, 207–249.

    Article  Google Scholar 

  • Evans R.L., Hirth G., Baba K., Forsyth D., Chave A. and Mackie R., 2005. Geophysical evidence from the MELT area for compositional controls on oceanic plates. Nature, 437, 249–252.

    Article  Google Scholar 

  • Friedrichs B., 2007. MAPROS Software Manual. Metronix GmbH.

  • Gamble T.C., Goubau W.M. and Clarke J., 1979a. Magnetotellurics with a remote magnetic reference. Geophysics, 44, 53–68.

    Article  Google Scholar 

  • Gamble T.C., Goubau W.M. and Clarke J., 1979b. Error analysis for remote reference magnetotellurics. Geophysics, 44, 959–968.

    Article  Google Scholar 

  • Goubau W.M., Gamble T.D. and Clarke J., 1978. Magnetotelluric data analysis: removal of bias. Geophysics, 43, 1157–1166.

    Article  Google Scholar 

  • Groom R.W. and Bailey R.C., 1991. Analytic investigations of the effects of near-surface threedimensional galvanic scatterers on MT tensor decompositions. Geophysics, 56, 496–518.

    Article  Google Scholar 

  • Horn R.A. and Johnson C.R., 1985. Matrix Analysis, 1st Edn., Vol.1. Cambridge University Press, New York.

    Book  Google Scholar 

  • Jones A.G., Chave A.D., Egbert G., Auld D. and Bahr K., 1989. A comparison of techniques for magnetotelluric impedance estimation. J. Geophys. Res., 94, 14201–14213.

    Article  Google Scholar 

  • Jones A.G., 1992. Electrical conductivity of the continental lower crust. In: Fountain D.M., Arculus R. and Kay R.W. (Eds.), Continental Lower Crust. Developments in Geotectonics, 23. Elsevier, Amsterdam, The Netherlands, 81–143.

    Google Scholar 

  • Jones A.G. and Ferguson I.J., 2001. The electric Moho. Nature, 409, 331–333, DOI: 10.1038/35053053.

    Article  Google Scholar 

  • Korja T., 2007. How is the European lithosphere imaged by magnetotellurics? Surv. Geophys., 28, 239–272, DOI: 10.1007/s10712-007-9024-9.

    Article  Google Scholar 

  • Nichols E.A., Morrison H.F. and Clarke J., 1988. Signals and noise in measurements of lowfrequency geomagnetic fields. J. Geophys. Res., 93, 13743–13754.

    Article  Google Scholar 

  • Park S.K. and Ducea M.N., 2003. Can in situ measurements of mantle electrical conductivity be used to infer properties of partial melts? J. Geophys. Res., 108, 2270, DOI: 10.1029/2002JB001899.

    Article  Google Scholar 

  • Patro P. K. and Egbert G.D., 2008. Regional conductivity structure of Cascadia: preliminary results from 3D inversion of USArray transportable array magnetotelluric data. Geophys. Res. Lett., 35, L20311, DOI: 10.1029/2008GL035326.

    Article  Google Scholar 

  • Pedersen L.B., 1988. Some aspects of magnetotelluric field procedures. Surv. Geophys., 9, 245–257.

    Article  Google Scholar 

  • Petiau G. and Dupis A., 1980. Noise, temperature coefficient, and long-time stability of electrodes for telluric observations. Geophys. Prospect., 28, 792–804.

    Article  Google Scholar 

  • Schultz A., Kurtz R.D., Chave A.D. and Jones A.G., 1993. Conductivity discontinuities in the upper mantle beneath a stable craton. Geophys. Res. Lett., 20, 2941–2944.

    Article  Google Scholar 

  • Sheriff R.E. and Geldart L.P., 1995. Exploration Seismology, 2nd Edn. Cambridge University Press, New York.

    Book  Google Scholar 

  • Spitzer K., 2001. Magnetotelluric static shift and direct current sensitivity. Geophys. J. Int., 144, 289–299.

    Article  Google Scholar 

  • Sutarno D. and Vozoff K., 1989. Robust M-estimation of magnetotelluric impedance tensors. Explor. Geophys., 20, 383–398.

    Article  Google Scholar 

  • Torres-Verdin C. and Bostick F.X., 1992. Principles of spatial surface electric field filtering in magnetotellurics: Electromagnetic array profiling (EMAP). Geophysics, 57, 603–622.

    Article  Google Scholar 

  • Wannamaker P.E., Booker J.R., Jones A.G., Chave A.D., Filloux J.H., Waff H.S. and Law L.K., 1989. Resistivity cross-section through the de Fuca, Juan subduction system and its tectonic implications. J. Geophys. Res., 94, 14127–14145.

    Article  Google Scholar 

  • Wei W., Unsworth M., Jones A.G., Booker J.R., Tan H., Nelson D., Chen L., Li S., Solon K., Bedrosian P., Jin S., Deng M., Ledo J., Kay D. and Roberts B., 2001. Detection of widespread fluids in the Tibetan crust by magnetotelluric studies. Science, 292, 716–719.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yixian Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, L., Xu, Y. Multi-station superposition for magnetotelluric signal. Stud Geophys Geod 57, 276–291 (2013). https://doi.org/10.1007/s11200-012-1129-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-012-1129-z

Keywords

Navigation