Skip to main content
Log in

Detection of regional phases of seismic body waves using an array of three-component sensors

  • Published:
Seismic Instruments Aims and scope Submit manuscript

Abstract

A small-aperture seismic array consisting of seven three-component seismometers carried out continuous measurements of regional seismicity in a selected area of the Nizhni Novgorod nuclear power plant during four months of 2013. Automatic signal detection using beamforming was applied separately for each motion component. Two horizontal components were transformed into radial and transverse components for the given values of the velocity and azimuth of the plane wave front. We have investigated the dependence of the coherence of microseismic noise on frequency, azimuth, and slowness, as well as determining the level of cross-correlation between signals on separate channels in order to estimate expected improvement in the signal-to-noise ratio, which is crucial for signal detection. Most signals detected by the seismic array from regional sources are associated with quarry blasts. Using repetitive explosions at seven quarries, we have quantitatively estimated and compared the increase in detection efficiency of regional seismic phases using a three-component small aperture seismic array and a subarray of vertical sensors. Horizontal sensors showed a higher efficiency in the detection of transverse waves, while the subarray of vertical sensors missed S-waves from certain events. For one of the nearby quarries, the vertical subarray missed up to 25% of events (5 of 20). The results of the investigation point to the need for the use of three-component seismic arrays for the study of regional seismicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adushkin, V.V., Kocharyan, G.G., and Sanina, I.A., Contribution of explosions to development of seismic strains in the region of the East European Craton, Dokl. Earth Sci., 2011, vol. 441, Part 1, pp. 1523–1525.

    Article  Google Scholar 

  • Adushkin, V.V., Sanina, I.A., Vladimirova, I.S., Gabsatarov, Yu.V., Gorbunova, E.M., and Ivanchenko, G.N., Modern geodynamically active zones in the central East European Craton, Dokl. Earth Sci., 2013, vol. 452, Part 2, pp. 1042–1045.

    Article  Google Scholar 

  • Bear, L.K. and Pavlis, G.L., Estimation of slowness vectors and their uncertainty using multiwavelet seismic array processing, Bull. Seismol. Soc. Am., 1997, vol. 87, pp. 755–769.

    Google Scholar 

  • Bobrov, D., Kitov, I., and Zerbo, L., Perspectives of crosscorrelation in seismic monitoring at the International Data Centre, Pure Appl. Geophys., 2014, vol. 171, nos. 3–5, pp. 439–468.

    Article  Google Scholar 

  • Braun, T. and Schweitzer, J., Spatial noise-field characteristics of a three-component small aperture test array in Central Italy, Bull. Seismol. Soc. Am., 2008, vol. 98, no. 4, pp. 1876–1886.

    Article  Google Scholar 

  • Braun, T., Schweitzer, J., Azzara, R., Piccinini, D., Cocco, M., and Boschi, E., Results from the temporary installation of a small aperture seismic array in the Central Apennines and its merits for local events detection and location capabilities, Ann. Geophys., 2004, vol. 47, no. 5, pp. 1557–1568.

    Google Scholar 

  • Bugaev, E.G., Kishkina, S.B., and Sanina, I.A., Peculiarities of seismic monitoring in the sites of nuclear energy objects within the East European Craton, Yad. Radiats. Bezop., 2012, no. 3, pp. 1–9.

    Google Scholar 

  • Coyne, J., Bobrov, D., Bormann, P., Duran, E., Grenard, P., Haralabus, G., Kitov, I., and Starovoit, Yu., CTBTO: Goals, networks, data analysis and data availability, in New Manual of Seismological Practice Observatory, Bormann, P., Ed., 2012, Ch. 15. doi: 10.2312/GFZ.NMSOP-2-ch15

    Google Scholar 

  • Gibbons, S.J., Schweitzer, J., Ringdal, F., Kværna, T., Mykkeltveit, S., and Paulsen, B., Improvements to seismic monitoring of the European Arctic using three-component array processing at SPITS, Bull. Seismol. Soc. Am., 2011, vol. 101, no. 6, pp. 2737–2754.

    Article  Google Scholar 

  • Harjes, H.-P., Design and siting of a new regional seismic array in Central Europe, Bull. Seismol. Soc. Am., 1990, vol. 80, pp. 1801–1817.

    Google Scholar 

  • Ingate, S.F., Husebye, E.S., and Christofferson, A., Regional arrays and optimum data processing schemes, Bull. Seismol. Soc. Am., 1985, vol. 75, no. 4, pp. 1155–1177.

    Google Scholar 

  • Kennett, B.L.N., Staking three-component seismograms, Geophys. J. Int., 2000, vol. 141, pp. 263–269.

    Article  Google Scholar 

  • Kishkina, S.B. and Bugaev, E.G., Control of seismic safety for the nuclear energy objects, Vestn. NYaTs RK, 2014, no. 2, pp. 153–163.

    Google Scholar 

  • Kitov, I.O., Sanina, I.A., Nepeina, K.S., and Konstantinovskaya, N.L., Application of the matched filter technique at the Mikhnevo small aperture seismic array, Seism. Prib., 2014, vol. 50, no 3, pp. 5–18.

    Google Scholar 

  • Kushnir, A.F. and Lapshin, V.M., An optimal processing of signals received by an array of spatially distributed sensors, Vychisl. Seismol., 1984, vol. 17, pp. 150–158.

    Google Scholar 

  • Küperkoch, L., Meier, T., and Diehl, T., Automated event and phase identification, in New Manual of Seismological Practice Observatory, Bormann, P., Ed., 2012, Ch. 16. doi: 10.2312/GFZ.NMSOP-2-ch16

    Google Scholar 

  • Sanina, I., Gabsatarova, I., Chernykh, O., Riznichenko, O., Volosov, S., Nesterkina, M., and Konstantinovskaya, N., The Mikhnevo small aperture array enhances the resolution property of seismological observations on the East European Platform, J. Seismol., 2012, vol. 15, pp. 545–556.

    Article  Google Scholar 

  • Schweitzer, J., Fyen, J., Mykkeltveit, S., Gibbons, S.J., Pirli, M., Kühn, D., and Kværna, T., Seismic arrays, in New Manual of Seismological Practice Observatory, Bormann, P., Ed., 2012, Ch. 9. doi: 10.2312/GFZ.NMSOP-2-ch9

    Google Scholar 

  • Van Trees, H.L., Detection, Estimation and Modulation Theory, New York: Wiley, 1968.

    Google Scholar 

  • Vinnik, L.P., Struktura mikroseism i nekotorye voprosy metodiki gruppirovaniya (Structure of Microseisms and Some Problems of Stacking Method), Moscow: Nauka, 1968.

    Google Scholar 

  • Wagner, G.S. and Owens, T.J., Broadband eigen-analysis for three-component seismic array, IEEE Trans., Signal Process., 1995, vol. 43, pp. 1738–1741.

    Article  Google Scholar 

  • Wagner, G.S. and Owens, T.J., Signal detection using multichannel seismic data, Bull. Seismol. Soc. Am., 1996, vol. 86, pp. 221–231.

    Google Scholar 

  • Zemletryaseniya Rossii v 2013 godu (Earthquakes in Russia in 2013), Obninsk: GS RAN, 2015 (in press).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. O. Kitov.

Additional information

Original Russian Text © I.O. Kitov, S.G. Volosov, S.B. Kishkina, N.L. Konstantinovskaya, K.S. Nepeina, M.A. Nesterkina, I.A. Sanina, 2015, published in Seismicheskie Pribory, 2015, Vol. 51, No. 1, pp. 27–45.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kitov, I.O., Volosov, S.G., Kishkina, S.B. et al. Detection of regional phases of seismic body waves using an array of three-component sensors. Seism. Instr. 52, 19–31 (2016). https://doi.org/10.3103/S0747923916010060

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0747923916010060

Keywords

Navigation