Skip to main content
Log in

A Brovar-type solution of the fixed geodetic boundary-value problem

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

For more than 150 years gravity anomalies have been used for the determination of geoidal heights, height anomalies and the external gravity field. Due to the fact that precise ellipsoidal heights could not be observed directly, traditionally a free geodetic boundary-value problem (GBVP) had to be formulated which after linearisation is related to gravity anomalies. Since nowadays the three-dimensional positions of gravity points can be determined by global navigation satellite systems very precisely, the modern formulation of the GBVP can be based on gravity disturbances which are related to a fixed GBVP using the known topographical surface of the Earth as boundary surface. The paper discusses various approaches into the solution of the fixed GBVP which after linearization corresponds to an oblique-derivative boundary-value problem for the Laplace equation. Among the analytical solution approaches a Brovar-type solution is worked out in detail, showing many similarities with respect to the classical solution of the scalar free GBVP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Backus G.E., 1968. Application of a non-linear boundary value problem for Laplace’s equation to gravity and magnetic intensity surveys. Q. J. Mech. Appl. Math., XXI, 195–221.

    Article  Google Scholar 

  • Bjerhammar A. and Svensson L., 1983. On the geodetic boundary value problem for a fixed boundary surface — a satellite approach. Bulletin Géodésique, 57, 382–393.

    Article  Google Scholar 

  • Bosch W., 1979. Untersuchungen zu schiefachsigen und gemischten Randwertaufgaben der Geodäsie. German Geodetic Kommission (DGK), Series C No. 258, München, Germany (in German).

  • Brovar V.V., 1964. On the solutions of Molodensky’s boundary value problem. Bulletin Géodésique, 72, 167–173.

    Article  Google Scholar 

  • Čunderlík R., Mikula K. and Mojzeš M., 2008. Numerical solution of the linearized fixed gravimetric boundary-value problem. J. Geodesy, 82, 15–29.

    Article  Google Scholar 

  • Giraud G., 1934. Equations à intègrales principales. Etude suivie d’une application. Ann. Sci. Ec. Norm. Super., 51, 251–372 (in French).

    Google Scholar 

  • Heck B., 1989. On the non-linear geodetic boundary value problem for a fixed boundary surface. Bulletin Géodésique, 63, 57–67.

    Article  Google Scholar 

  • Heck B., 1990. An evaluation of some systematic error sources affecting terrestrial gravity anomalies. Bulletin Géodésique, 64, 88–108.

    Article  Google Scholar 

  • Heck B., 1991. On the Linearized Boundary Value Problems of Physical Geodesy. Report No. 407. Department of Geodetic Science, Ohio State University, Columbus, Ohio.

    Google Scholar 

  • Heck B. and Seitz K., 1993. Effects of Non-Linearity in the Geodetic Boundary Value Problems. German Geodetic Kommission (DGK), Series A No. 109, München, Germany.

  • Heck B. and Seitz K., 2003. Solution of the linearized geodetic boundary value problem for an ellipsoidal boundary to order e3. J. Geodesy, 77, 182–192.

    Article  Google Scholar 

  • Hofmann-Wellenhof B. and Moritz H., 2006. Physical Geodesy, 2nd Edition. Springer-Verlag, Wien, New York.

    Google Scholar 

  • Holota P., 1985. Boundary value problems of physical geodesy: present state, boundary perturbation and the Green-Stokes representation. Proceedings 1st Hotine-Marussi Symposium on Mathematical Geodesy. Politecnico di Milano, Milano, Italy, 529–558.

    Google Scholar 

  • Holota P., 1989. Higher order theories in the solution of boundary value problems of physical geodesy by means of successive approximations.. In: Sacerdote F. and Sansò F. 2nd Hotine-Marussi Symposium on Mathematical Geodesy, Politecnico di Milano, Milano, Italy, 471–505

    Google Scholar 

  • Holota P., 1997. Coerciveness of the linear gravimetric boundary-value problem and a geometrical interpretation. J. Geodesy, 71, 640–651.

    Article  Google Scholar 

  • Hotine M., 1969. Mathematical Geodesy. ESSA Monograph 2, US Dept. of Commerce, Washington.

    Google Scholar 

  • Klees R., 1992. Lösung des fixen geodätischen Randwertproblems mit Hilfe der Randelementmethode. German Geodetic Kommission (DGK), Series C No. 382, München, Germany (in German).

  • Klees R., 1998. Topics on boundary element methods. In: Sansò F. and Rummel R. (Eds.), Geodetic Boundary Value Problems in View of the One Centimeter Geoid. Lecture Notes in Earth Sciences, 65. Springer-Verlag, Heidelberg, Germany, 482–531.

    Chapter  Google Scholar 

  • Klees R., van Gelderen M., Lage C. and Schwab C., 2001. Fast numerical solution of the linearized Molodensky problem. J. Geodesy, 75, 349–362.

    Article  Google Scholar 

  • Koch, K.R., 1971. Die geodätische Randwertaufgabe bei bekannter Erdoberfläche. Zeitschrift für Vermessungswesen, 96, 218–224.

    Google Scholar 

  • Koch K.R. and Pope A.J., 1972. Uniqueness and existence for the geodetic boundary value problem using the known surface of the earth. Bulletin Géodesique, 46, 467–476.

    Article  Google Scholar 

  • Lehmann R., 1997. Studies on the Use of Boundary Element Methods in Physical Geodesy. German Geodetic Kommission (DGK), Series A No. 113, München, Germany.

  • Lehmann R. and Klees R., 1996. Parallel setup of Galerkin equation system for a geodetic boundary value problem. In: Hackbusch W. and Wittum G. (Eds.), Boundary Elements: Implementation and Analysis of Advanced Algorithms. Notes on Numerical Fluid Mechanics, 54. Vieweg Verlag, Braunschweig, Germany, 171–181.

    Google Scholar 

  • Martensen E. and Ritter S., 1997. Potential theory. In: Sansò F. and Rummel R. (Eds.), Geodetic Boundary Value Problems in View of the One Centimeter Geoid. Lecture Notes in Earth Sciences, 65. Springer-Verlag, Heidelberg, Germany, 19–66.

    Chapter  Google Scholar 

  • Marych M.I., 1969. On the second approximation of M.S. Molodensky for the disturbing potential. Geodezija, Kartografija i Aerofotosyemka, 10, 17–27 (in Russian).

    Google Scholar 

  • Mikhlin S.G., 1965. Multidimensional Singular Integrals and Integral Equations. Pergamon Press, Oxford.

    Google Scholar 

  • Miranda C., 1970. Partial Differential Equations of Elliptic Type, 2nd Edition. Springer-Verlag, Berlin, Heidelberg, New York.

    Google Scholar 

  • Molodensky M.S., Yeremeev V.F. and Yurkina M.I., 1960. Methods for Study of the External Gravitational Field and Figure of the Earth. Trudy TsNIIGAiK, 131, Geodezizdat, Moscow (English translat.: Israel Program for Scientific Translation, Jerusalem 1962).

  • Moritz H., 1969. Nonlinear Solutions of the Geodetic Boundary-Value Problem. Report No. 126. Department of Geodetic Science, Ohio State University, Columbus, Ohio.

    Google Scholar 

  • Moritz H., 1980. Advanced Physical Geodesy. H. Wichmann Verlag, Karlsruhe, Germany.

    Google Scholar 

  • Moritz H., 2000. Molodensky’s theory and GPS. In: Moritz H. and Yurkina M.A. (Eds.), M.S. Molodensky: In Memoriam. Mitteilungen der geodätischen Institute der Technischen Universität Graz, 88, Graz, Austria, 69–85.

  • Nesvadba O., Holota P. and Klees R., 2007. A direct method and its numerical interpretation in the determination of the Earth’s gravity field from terrestrial data. In: Tregoning P. and Rizos C. (Eds.), Dynamic Planet. International Association of Geodesy Symposia, 130. Springer-Verlag, Heidelberg, Germany, 370–376.

    Chapter  Google Scholar 

  • Otero J. and Auz A., 2003. A formal comparison between Marych-Moritz’s series, Sansò’s change of boundary method and a variational approach for solving some linear geodetic boundary value problems. In: Sansò F. (Ed.), V Hotine-Marussi Symposium on Mathematical Geodesy. International Association of Geodesy Symposia, 127, Springer-Verlag, Heidelberg, Germany, 226–233.

    Google Scholar 

  • Pellinen L.P., 1974. On the identity of various solutions of Molodensky’s problem with the help of a small parameter. Geodezija i Aerofotosyemka, 15, 65–71.

    Google Scholar 

  • Sacerdote F. and Sansò F., 1989. On the analysis of the fixed-boundary gravimetric boundary value problem. In: Sacerdote F. and Sansò F. (Eds.), 2nd Hotine-Marussi Symposium on Mathematical Geodesy, Politecnico di Milano, Milano, Italy, 507–516.

    Google Scholar 

  • Sansò F., 1993. Theory of geodetic B.V.P.s applied to the analysis of altimetric data. In: Rummel R. and Sansò F. (Eds.), Satellite Altimetry in Geodesy and Oceanography. Lecture Notes in Earth Sciences, 50. Springer-Verlag, Berlin, Heidelberg, New York, 317–371.

    Chapter  Google Scholar 

  • Seitz K., 1997. Ellipsoidische und topographische Effekte im geodätischen Randwertproblem. German Geodetic Kommission (DGK), Series C No. 483, München, Germany.

  • Sideris M.G., 1990. Rigorous gravimetric terrain modelling using Molodensky’s operator. Manuscripta Geodaetica, 15, 97–106.

    Google Scholar 

  • Stock B., 1983. A Molodenskii-type solution of the geodetic boundary value problem using the known surface of the earth. Manuscripta Geodaetica, 8, 273–288.

    Google Scholar 

  • Stock B., 1985. Über die Anwendung der Randelementmethode zur Lösung des linearen Molodenskiischen und verallgemeinerten Neumannschen Geodätischen Randwertproblems. German Geodetic Kommission (DGK), Series C No. 312, München, Germany (in German).

  • Stokes G.G., 1849. On the variation of gravity on the surface of the Earth. Trans. Cambr. Phil. Soc., 8, 672–695.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Heck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heck, B. A Brovar-type solution of the fixed geodetic boundary-value problem. Stud Geophys Geod 55, 441–454 (2011). https://doi.org/10.1007/s11200-011-0025-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-011-0025-2

Keywords

Navigation