Skip to main content

Advertisement

Log in

Model ALADIN as regional climate model for Central and Eastern Europe

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

Results obtained with two versions of the Limited Area Model (LAM) ALADIN over differently sized integration domains (large, intermediate and small) in the European area are presented in order to investigate both the general model performance and the influence of domain choice on the quality of obtained results. The aim is also to illustrate the issues related to the strategy of selection of the optimal integration domain. Each of these studies has been performed with two versions of the ALADIN model: the first one is ALADIN-CLIMATE developed at CNRM/Météo-France, the second one is ALADIN-CLIMATE/CZ prepared at the Czech Hydrometeorological Institute (CHMI). This leaves us with total of six experiments forced by the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-40 reanalysis data. The west Balkan domain covering Bulgaria is used as an evaluation region for investigation of the temporal and spatial properties of simulated precipitation and temperature fields. This region has been selected for its challenging orography making the results obtained here a valuable source for studies leading to further developments in climate modeling. It was found that size of the domain strongly affects the quality of obtained results. We have found that the largest domain reproduces the spatial characteristics of climate (such as bias) very well, but its use results in a poor representation of temporal aspects, which are however captured very well in experiments over both smaller domains. Our findings suggest that there is no optimal choice of domain size, securing the best results for both spatial and temporal evaluation.

Our study also proves that model ALADIN can be efficiently used for climate research purposes, which together with its modest computational demands should make it as an attractive modeling choice for the Central and Eastern European climate research community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bhaskaran B., Jones R.G., Murphy J.M. and Noguer M., 1996. Simulations of the Indian summer monsoon using a nested regional climate model: Domain size experiments. Clim. Dyn., 12, 573–587.

    Google Scholar 

  • Bougeault P., 1985. A simple parameterization of the large-scale effects of cumulus convection. Mon. Weather Rev., 113, 2108–2121.

    Article  Google Scholar 

  • Bubnová R., Hello G., Bénard P. and Geleyn J.-F., 1995. Integration of the fully elastic equations cast in the hydrostatic pressure terrain-following coordinate in the framework of ARPEGE/Aladin NWP system. Mon. Weather Rev., 123, 515–535.

    Article  Google Scholar 

  • Davies H.C., 1976. A lateral boundary formulation for multi level prediction models. Q. J. R. Meteorol. Soc., 102, 405–418.

    Google Scholar 

  • de Elia R., Plummer D., Caya D., Frigon A., Côté H., Giguère M., Paquin D., Biner S. and Harvey R., 2008. Evaluation of uncertainties in the CRCM-simulated North American climate: nesting-related issues. Clim. Dyn., 30, 113–132.

    Article  Google Scholar 

  • Déqué M., 2007. Frequency of precipitation and temperature extremes over France in an anthropogenic scenario: model results and statistical correction according to observed values. Glob. Planet. Change, 57, 16–26.

    Article  Google Scholar 

  • Dimitrijevic M. and Laprise R., 2005. Validation of the nesting technique in a regional climate model and sensitivity tests to the resolution of the lateral boundary conditions during summer. Clim. Dyn., 25, 550–580.

    Article  Google Scholar 

  • Douville H., Royer J.-F. and Mahfouf J.-F., 1995. A new snow parametrization for the Météo-France climate model. Part I: Validation in stand-alone experiments. Clim. Dyn., 12, 21–35.

    Article  Google Scholar 

  • Farda A., Štěpánek P., Halenka T., Skalák P. and Belda M., 2007. Model ALADIN in climate mode forced with ERA-40 reanalysis (coarse resolution experiment). Meteorological Journal, 10, 123–130.

    Article  Google Scholar 

  • Gerard L., 2001. Physical parameterizations in ARPÉGE-ALADIN operational model. ALADIN Documentation, Météo-France, 130 pp.

  • Hewitt C.D and Griggs D.J., 2004. Ensembles-based predictions of climate changes and their impacts. Eos Trans. AAGU, 85, 566.

    Google Scholar 

  • Horányi A., Ihász I. and Radnóti G., 1996. ARPEGE/ALADIN: A numerical weather predicition model for Central-Europe with the participation of the Hungarian Meteorological Service. Időjárás, 100, 277–300.

    Google Scholar 

  • Huth R., 2002. Statistical downscaling of daily temperature in central Europe. J. Climate, 15, 1731–1742.

    Article  Google Scholar 

  • Jacob D., Bärring L., Christensen O.B., Christensen J.H., de Castro M., Déqué M., Giorgi F., Hagemann S., Hirschi M., Jones R., Kjellström E., Lenderink G., Rockel B., Sànchez E.S., Schär C., Seneviratne S.I., Somot S., van Ulden A. and van den Hurk B., 2007. An intercomparison of regional climate models for Europe: Model performance in Present-Day Climate. Clim. Change, 81,Supplement 1, 31–52, doi: 10.1007/s10584-006-9213-4.

    Article  Google Scholar 

  • Janišková M., 1995. Study of the systematic errors in ALADIN associated to the physical part of the model. Note ALADIN n°7, CNRM, Météo-France, 82.

    Google Scholar 

  • Jones R.G., Murphy J.M. and Noguer M., 1995. Simulation of climate change over Europe using a nested regional climate model. Part I: assessment of control climate, including sensitivity to location of lateral boundaries. Q. J. R. Meteorol. Soc., 121, 1413–1449.

    Google Scholar 

  • Leduc M. and Laprise R., 2009. Regional climate model sensitivity to domain size. Clim. Dyn., 32, 833–854, doi: 10.1007/s00382-008-0400-z.

    Article  Google Scholar 

  • Lucas-Picher P., Caya D., de Elia R. and Laprise R., 2008. Investigation of regional climate models’ internal variability with a ten-member ensemble of ten years over a large domain. Clim. Dyn., 31, 927–940, doi: 10.1007/s00382-008-0384-8.

    Article  Google Scholar 

  • Malkmus W., 1967. Random Lorentz band model with exponential-tailed S-1 line-intensity distribution function. J. Opt. Soc. Am., 57, 323–329.

    Article  Google Scholar 

  • Mellor G.L. and Yamada T., 1982. Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20, 851–875.

    Article  Google Scholar 

  • Mitchell T.D., Carter T.R., Jones P.D., Hulme M. and New M., 2004. A comprehensive set of high-resolution grids of monthly climate for Europe and the globe: the observed record (1901–2000) and 16 scenarios (2001–2100). Tyndall Centre for Climate Change Research, Working Paper 55 (http://www.ipcc-data.org/docs/tyndall_working_papers_wp55.pdf).

  • Morcrette J.-J., 1989. Description of the Radiation Scheme in the ECMWF Model. Technical Memorandum 165, ECMWF, 26 pp.

  • Noilhan J. and Planton S., 1989. A simple parameterization of land surface processes for meteorological models. Mon. Weather Rev., 117, 536–549.

    Article  Google Scholar 

  • Radu R., Somot S. and Déqué M., 2008. Spectral nudging in a spectral regional climate model. Tellus Ser. A — Dyn. Meteorol. Oceanol., 60, 898–910.

    Google Scholar 

  • Rauscher S.A., Seth A., Qian J.-H. and Camargo S.J., 2006. Domain choice in an experimental nested modeling prediction system for South America. Theor. Appl. Climatol., 86, 229–246.

    Article  Google Scholar 

  • Ricard J.-L. and Royer J.-F., 1993. A statistical cloud scheme for use in an AGCM. Ann. Geophys. — Atmos. Hydrosph. Space Sci., 11, 1095–1115.

    Google Scholar 

  • Ritter B. and Geleyn J.-F., 1992. A comprehensive radiation scheme of numerical weather prediction with potential application to climate simulations. Mon. Weather Rev., 120, 303–325.

    Article  Google Scholar 

  • Sanchez-Gomez E., Somot S. and Déqué M., 2009. Ability of an ensemble of regional climate models to reproduce the weather regimes during the period 1961–2000. Clim. Dyn., 33, 723–736.

    Article  Google Scholar 

  • Taylor K.E., 2001. Summarizing multiple aspects of model performance in single diagram. J. Geophys. Research, 106(D7), 7183–7192.

    Article  Google Scholar 

  • Tegen I., Hollrig P., Chin M., Fung I., Jacob D. and Penner J., 1997. Contribution of different aerosol species to the global aerosol extinction optical thickness: estimates from model results. J. Geophys. Res., 102, 23895–23915.

    Article  Google Scholar 

  • Temperton C., Hortal M. and Simmons A.J., 2001. A two-time-level semi-Lagrangian global spectral model. Q. J. R. Meteorol. Soc., 127, 111–128.

    Article  Google Scholar 

  • Uppala S.M., Kållberg P.W., Simmons A.J., Andrae U., da Costa Bechtold V., Fiorino M., Gibson J.K., Haseler J., Hernandez A., Kelly, G.A., Li, X., Onogi K., Saarinen S., Sokka N., Allan R.P., Andersson E., Arpe K., Balmaseda M.A., Beljaars A.C.M., van de Berg L., Bidlot J., Bormann N., Caires S., Chevallier F., Dethof A., Dragosavac M., Fisher M., Fuentes M., Hagemann S., Hólm E., Hoskins B.J., Isaksen L., Janssen P.A.E.M., Jenne R., McNally A.P., Mahfouf J.-F., Morcrette J.-J., Rayner N.A., Saunders R.W., Simon P., Sterl A., Trenberth K.E., Untch A., Vasiljevic D., Viterbo P. and Woollen J., 2005. The ERA-40 re-analysis. Q. J. R. Meteorol. Soc., 131, 2961–3012.

    Article  Google Scholar 

  • Váña F., Benard P., Geleyn J.-F., Simon A. and Seity Y., 2008. Semi-Lagrangian advection scheme with controlled damping — an alternative way to nonlinear horizontal diffusion in a numerical weather prediction model. Accepted by Q. J. R. Meteorol. Soc., 134, 523–537.

    Article  Google Scholar 

  • von Storch H., Langenberg H. and Feser F., 2000. A spectral nudging technique for dynamical downscaling purposes. Mon. Weather Rev., 128, 3664–3673.

    Article  Google Scholar 

  • Wilby R.L., Wigley T.M.L., Conway D., Jones P.D., Hewitson B.C., Main J. and Wilks D.S., 1998. Statistical downscaling of general circulation model output, a comparison of Methods. Water Resour. Res., 34, 2995–3008.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleš Farda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farda, A., Déué, M., Somot, S. et al. Model ALADIN as regional climate model for Central and Eastern Europe. Stud Geophys Geod 54, 313–332 (2010). https://doi.org/10.1007/s11200-010-0017-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-010-0017-7

Keywords

Navigation