Skip to main content
Log in

Scattering of elastic waves in cracked media using a finite difference method

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

This paper presents a simple, flexible way of introducing stress-free boundary conditions for including cracks and cavities in 2D elastic media by a finite difference method (FDM). The surfaces of cracks and cavities are discretized in a staircase on a rectangular grid scheme. When zero-stress is applied to free surfaces, the resulting finite difference schemes require a set of adjacent fictitious points. These points are classified based on the geometry of the free surface and their displacement is computed as a prior step to later calculation of motion on the crack surface. The use of this extra line of points does not involve a significant drain on computational resources. However, it does provide explicit finite difference schemes and the construction of displacement on the free surfaces by using the correct physical boundary conditions. An accuracy analysis compares the results to an analytical solution. This quantitative analysis uses envelope and phase misfits. It estimates the minimum number of points per wavelength necessary to achieve suitable results. Finally, the method is employed to compute displacement in various models with cavities in the P-SV formulation. The results show suitable construction of the reflected P and S waves from the free surface as well as diffraction produced by these cavities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boore D.M., 1972. Finite difference methods for seismic wave propagation in heterogeneous materials. In: B. Alder, S. Fernbach and B.A. Bolt (Ed.), Seismology: Body Waves and Sources. Methods in Computational Physics, Vol. 11, Academic Press, New York, 1–37.

    Google Scholar 

  • Carcione J.M., 1998. Scattering of elastic waves by a plane crack of finite width in a transversely isotropic medium. Int. J. Numer. Anal. Methods Geomech., 22, 263–275.

    Article  Google Scholar 

  • Fornberg B., 1988. The pseudospectral method: accurate representation of interfaces in elastic wave calculations. Geophysics, 60, 1514–1526.

    Google Scholar 

  • Frankel A. and Clayton R., 1986. Finite difference simulation of seismic scattering: Implications for the propagation of short-period seismic waves in the crust and models in crustal heterogeneity. J. Geophys. Res., 91, 6465–6489.

    Google Scholar 

  • Hestholm S. and Ruud B., 2002. 3D free-boundary conditions for coordinate-transform finite-difference seismic modelling. Geophys. Prospect., 50, 463–474.

    Article  Google Scholar 

  • Higdon R.L., 1991. Absorbing boundary conditions for elastic waves. Geophysics, 56, 231–241.

    Article  Google Scholar 

  • Hong T.K. and Kennet B.L.N., 2004. Scattering of elastic waves in media with a random distribution of fluid-filled cavities: theory and numerical modelling. Geophys. J. Int., 159, 961–977.

    Article  Google Scholar 

  • Iturrarán-Viveros U., Vai R. and Sánchez-Sesma F.J., 2005. Scattering of elastic waves by a 2-D crack using the Indirect Boundary Element Method (IBEM). Geophys. J. Int., 162, 927–934.

    Article  Google Scholar 

  • Kawashima K., Omote R., Ito T., Fujita H. and Shima T., 2002. Nonlinear acoustic response through minute surface cracks: FEM simulation and experimentation. Ultrasonics, 40, 611–615.

    Article  Google Scholar 

  • Kristek J., Moczo P. and Archuleta R.J., 2002. Efficients methods to simulate planar free surface in the 3D 4th-order staggered-grid finite difference schemes. Stud. Geophys. Geod., 46, 355–382.

    Article  Google Scholar 

  • Kristeková M., Kristek J., Moczo P. and Day S.M., 2006. Misfit criteria for quantitative comparison of seismograms. Bull. Seismol. Soc. Amer. (in print).

  • Krüger O.S., Saenger E.H. and Shapiro S.A., 2005. Scattering and diffraction by a single crack: an accuracy analysis of the rotated staggered grid. Geophys. J. Int., 162, 25–31.

    Article  Google Scholar 

  • Levander A.R., 1988. Fourth-Order finite-difference P-SV seismograms. Geophysics, 53, 1425–1436.

    Article  Google Scholar 

  • Liu E. and Zhang Z., 2001. Numerical study of elastic wave scattering by cracks or inclusions using the boundary integral equation method. Geophysics, 62, 253–265.

    Article  Google Scholar 

  • Lysmer J. and Drake L.A., 1972. A finite element method for seismology. In: B. Alder, S. Fernbach and B.A. Bolt (Ed.), Seismology: Body Waves and Sources. Methods in Computational Physics, Vol. 11, Academic Press, New York, 181–215.

    Google Scholar 

  • Madariaga R., 1976. Dynamics of an expanding circular fault. Bull. Seismol. Soc. Amer., 66, 639–666.

    Google Scholar 

  • Marfurt K.J., 1984. Accuracy of finite-difference and finite-element modelling of the scalar and elastic wave equations. Geophysics, 49, 533–549.

    Article  Google Scholar 

  • Mittet R., 2002. Free-surface boundary conditions for elastic staggered-grid modelling schemes. Geophysics, 67, 1616–1623.

    Article  Google Scholar 

  • Moczo P., Bystrický E., Kristek J., Carcione J.M. and Bouchon M., 1997. Hybrid modeling of P-SV seismic motion at inhomogeneous viscoelastic topographic structures. Bull. Seismol. Soc. Amer., 87, 1305–1323.

    Google Scholar 

  • Moczo P., Kristek J., Vavryčuk V., Archuleta R.J. and Halada L., 2002. 3D Heterogeneous staggered-grid finite-difference modeling of seismic motion with volume harmonic and arithmetic averaging of elastic moduli and densities. Bull. Seismol. Soc. Amer., 92, 3042–3066.

    Article  Google Scholar 

  • Moczo P., Kristek J. and Gális M., 2004. Simulation of the planar free surface with near-surface lateral discontinuities in the finite-difference modeling of seismic motion. Bull. Seismol. Soc. Amer., 94, 760–768.

    Article  Google Scholar 

  • Munasinghe M. and Farnell G.W., 1973. Finite difference analysis of Rayleigh wave scattering at vertical discontinuities. J. Geophys. Res., 78, 2454–2466.

    Article  Google Scholar 

  • Ohminato T. and Chouet B.A., 1997. A free-surface boundary condition for including 3D topography in the finite-difference method. Bull. Seismol. Soc. Amer., 87, 494–515.

    Google Scholar 

  • Pérez-Ruiz J.A., Luzón F. and García-Jerez A. 2005. Simulation of an irregular free surface with a displacement finite-difference scheme. Bull. Seismol. Soc. Amer., 95, 2216–2231.

    Article  Google Scholar 

  • Pointer T., Liu E. and Hudson J.A., 1998. Numerical modelling of seismic waves scattered by hydrofractures: application of the indirect boundary element method. Geophys. J. Int., 135, 289–303.

    Article  Google Scholar 

  • Robertsson J.O.A., 1996. A numerical free-surface condition for elastic/viscoelastic finite-difference modeling in the presence of topography. Geophysics, 61, 1921–1934.

    Article  Google Scholar 

  • Rodrigues D., 1993. Large Scale Modelling of Seismic Wave Propagation. PhD Thesis, Ecole Centrale Paris.

  • Rodríguez-Castellanos A., Luzón F. and Sánchez-Sesma F.J., 2005. Diffraction of seismic waves in an elastic, cracked halfplane using a boundary integral formulation. Soil Dyn. Earthq. Eng., 25, 827–837.

    Article  Google Scholar 

  • Roth M. and Korn M., 1993. Single scattering theory versus numerical modelling in 2-D random media. Geophys. J. Int., 112, 124–140.

    Google Scholar 

  • Saenger E.H. and Shapiro S.A., 2002. Effective velocities in fractured media: a numerical study using the rotated staggered finite-difference grid. Geophys. Prospect., 50, 183–194.

    Article  Google Scholar 

  • Sánchez-Sesma F.J. and Iturrarán-Viveros U., 2001. Scattering and diffraction of SH waves by a finite crack: an analytical solution. Geophys. J. Int., 145, 749–758.

    Article  Google Scholar 

  • Van Baren G.B., Mulder W.A. and Herman G.C., 2001. Finite-difference modelling of scalar-wave propagation in cracked media. Geophysics, 66, 267–276.

    Article  Google Scholar 

  • Virieux J., 1984, SH-wave propagation in heterogeneous media: velocity stress finite difference method. Geophysics, 49, 1933–1957.

    Article  Google Scholar 

  • Vlastos S., Liu E., Main I.G. and Li X.Y., 2003. Numerical simulation of wave propagation in media with discrete distribution of fractures: effects of fractures sizes and spatial distributions. Geophys. J. Int., 152, 649–668.

    Article  Google Scholar 

  • Zahradník J., O’Leary P. and Sochacki J., 1994. Finite-difference schemes for elastic waves based on the integration approach. Geophysics, 59, 928–937.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez-Ruiz, J.A., Luzón, F. & García-Jerez, A. Scattering of elastic waves in cracked media using a finite difference method. Stud Geophys Geod 51, 59–88 (2007). https://doi.org/10.1007/s11200-007-0004-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-007-0004-9

Keywords

Navigation