Skip to main content
Log in

Gender Differences in Integration of Images in Visuospatial Memory

  • Published:
Sex Roles Aims and scope Submit manuscript

Abstract

We examined gender differences in mental integration of images in visuospatial short-term memory. College students were asked to imagine the combined abstract shape that would be formed by integrating two separate shapes briefly shown on a computer screen. The shapes were presented in four conditions: (1) simultaneously at the center of the screen, (2) simultaneously side-by-side, (3) sequentially at the center, and (4) sequentially side-by-side. Men were faster than women in all four conditions, but were significantly more accurate than women only when the two separate shapes were presented simultaneously side-by-side or sequentially at the center of the screen. We suggest that gender differences in basic visuospatial processes such as image integration may help to explain well-established gender differences in more complex spatial tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, J., & Tindall, M. (1972). The concept of home range: New data for the study of territorial behavior. In W. J. Mitchell (Ed.), Environmental design: Research and practice (Vol. 1, pp. 1–7). Los Angeles: University of California Press.

    Google Scholar 

  • Baenninger, M., & Newcombe, N. (1989). The role of experience in spatial test performance: A meta-analysis. Sex Roles, 20, 327–344.

    Article  Google Scholar 

  • Barnett, M. A., Vitaglione, G. D., Harper, K. K. G., Quackenbush, S. W., Steadman, L. A., & Valdez, B. S. (1997). Late adolescents' experiences with and attitudes toward videogames. Journal of Applied Social Psychology, 27, 1316–1334.

    Google Scholar 

  • Barquero, B., & Logie, R. H. (1999). Imagery constraints on quantitative and qualitative aspects of mental synthesis. European Journal of Cognitive Psychology, 11, 315–333.

    Google Scholar 

  • Bosco, A., Longoni, A. M., & Vecchi, T. (2004). Gender effects in spatial orientation: Cognitive profiles and mental strategies. Applied Cognitive Psychology, 18, 519–532.

    Article  PubMed  Google Scholar 

  • Brandimonte, M. A., Hitch, G. J., & Bishop, D. V. (1992). Verbal recoding of visual stimuli impairs mental image transformations. Memory and Cognition, 20, 449–455.

    Google Scholar 

  • Campbell, D. W., & Eaton, W. O. (1999). Sex differences in the activity level of infants. Infant and Child Development, 8, 1–17.

    Article  Google Scholar 

  • Choi, J., & Silverman, I. (2003). Processes underlying sex differences in route-learning strategies in children and adolescents. Personality and Individual Differences, 34, 1153–1166.

    Article  Google Scholar 

  • Contreras, M. J., Colom, R., Shih, P. C., Álava, M. J., & Santacreu, J. (2001). Dynamic spatial performance: Sex and educational differences. Personality and Individual Differences, 30, 117–126.

    Article  Google Scholar 

  • Cornoldi, C., & Vecchi, T. (2000). Mental imagery in blind people: The role of passive and active visuospatial processes. In M. A. Heller (Ed.), Touch, representation, and blindness (pp. 143–181). Oxford: Oxford University Press.

    Google Scholar 

  • Dabbs, J. M., Jr., Chang, E. L., Strong, R. A., & Milun, R. (1998). Spatial ability, navigation strategy, and geographic knowledge among men and women. Evolution and Human Behavior, 19, 89–98.

    Article  Google Scholar 

  • Eals, M., & Silverman, I. (1994). The hunter–gatherer theory of spatial sex differences: Proximate factors mediating the female advantage in recall of object arrays. Ethology and Sociobiology, 15, 95–105.

    Article  Google Scholar 

  • Eaton, W. O., & Enns, L. R. (1986). Sex differences in human motor activity level. Psychological Bulletin, 100, 19–28.

    Article  PubMed  Google Scholar 

  • Eccles, J. S., & Harold, R. D. (1991). Gender differences in sport involvement: Applying the Eccles' expectancy-value model. Journal of Applied Sport Psychology, 3, 7–35.

    Google Scholar 

  • Ecuyer-Dab, I., & Robert, M. (2004). Have sex differences in spatial ability evolved from male competition for mating and female concern for survival? Cognition, 91, 221–257.

    Article  PubMed  Google Scholar 

  • Farah, M. J., Levine, D. N., & Calvanio, R. (1988). A case study of mental imagery deficit. Brain and Cognition, 8, 147–164.

    Article  PubMed  Google Scholar 

  • Galea, L. A., & Kimura, D. (1993). Sex differences in route-learning. Personality and Individual Differences, 14, 53–65.

    Article  Google Scholar 

  • Greenfield, P. M., Brannon, G., & Lohr, D. (1994). Two-dimensional representation of movement through three-dimensional space: The role of video game expertise. Journal of Applied Developmental Psychology, 15, 87–103.

    Google Scholar 

  • Halpern, D. F. (2004). A cognitive-process taxonomy for sex differences in cognitive abilities. Current Directions in Psychological Science, 13, 135–139.

    Article  Google Scholar 

  • Halpern, D. F., & Wright, T. M. (1996). A process-oriented model of cognitive sex differences. Learning and Individual Differences, 8, 3–24.

    Google Scholar 

  • Harshman, R. A., & Paivio, A. (1987). “Paradoxical” sex differences in self-reported imagery. Canadian Journal of Psychology, 41, 287–302.

    Google Scholar 

  • Hart, R. (1978). Children's experience of place. New York: Irvington Press.

    Google Scholar 

  • Herman, J. F., Heins, J. A., & Cohen, D. S. (1987). Children's spatial knowledge of their neighborhood environment. Journal of Applied Developmental Psychology, 8, 1–15.

    Article  Google Scholar 

  • Jarvis, B. (2001a). DirectRT (Version 2002) [Computer Software]. New York: Empirisoft.

    Google Scholar 

  • Jarvis, B. (2001b). DirectRT (Version 2002) [Computer Software]. New York: Empirisoft.

    Google Scholar 

  • Kosslyn, S. M. (1991). A cognitive neuroscience of visual cognition: Further developments. In R. H. Logie & M. Denis (Eds.), Advances in psychology: Vol. 80. Mental images in human cognition (pp. 351–381). Oxford: North-Holland.

    Google Scholar 

  • Kuhlman, J. S., & Beitel, P. A. (1989). Age/sex/experience: Possible explanations of differences in anticipation of coincidence. Perceptual and Motor Skills, 68, 1283–1289.

    Google Scholar 

  • Law, D. J., Pellegrino, J. W., & Hunt, E. B. (1993). Comparing the tortoise and the hare: Gender differences and experience in dynamic spatial reasoning tasks. Psychological Science, 4, 35–40.

    Google Scholar 

  • Lawton, C. A. (1994). Gender differences in way-finding strategies: Relationship to spatial ability and spatial anxiety. Sex Roles, 30, 765–779.

    Article  Google Scholar 

  • Lawton, C. A. (2001). Gender and regional differences in spatial referents used in direction giving. Sex Roles, 44, 321–337.

    Article  Google Scholar 

  • Lawton, C. A., & Morrin, K. A. (1999). Gender differences in pointing accuracy in computer-simulated 3D mazes. Sex Roles, 40, 73–92.

    Article  Google Scholar 

  • Levine, S. C., Huttenlocher, J., Taylor, A., & Langrock, A. (1999). Early sex differences in spatial skill. Developmental Psychology, 35, 940–949.

    PubMed  Google Scholar 

  • Liben, L. S., Susman, E. J., Finkelstein, J. W., Chinchilli, V. M., Kunselman, S., Schwab, J., et al. (2002). The effects of sex steroids on spatial performance: A review and an experimental clinical investigation. Developmental Psychology, 38, 236–253.

    Article  PubMed  Google Scholar 

  • Linn, M. C., & Petersen, A. C. (1985). Emergence and characterization of sex differences in spatial ability: A meta-analysis. Child Development, 56, 1479–1498.

    PubMed  Google Scholar 

  • Logie, R. H. (1995). Visuo-spatial working memory. Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Lohman, D. F., & Nichols, P. D. (1990). Training spatial abilities: Effects of practice on rotation and synthesis tasks. Learning and Individual Differences, 2, 67–93.

    Article  Google Scholar 

  • Loring-Meier, S., & Halpern, D. F. (1999). Sex differences in visuospatial working memory: Components of cognitive processing. Psychonomic Bulletin and Review, 6, 464–471.

    PubMed  Google Scholar 

  • Luzzatti, C., Vecchi, T., Agazzi, D., Cesa-Bianchi, M., & Vergani, C. (1998). A neurological dissociation between preserved visual and impaired spatial processing in mental imagery. Cortex, 34, 461–469.

    PubMed  Google Scholar 

  • Matthews, M. H. (1986a). Gender, graphicacy, and geography. Educational Review, 38, 259–271.

    Google Scholar 

  • Matthews, M. H. (1986b). The influence of gender on the environmental cognition of young boys and girls. Journal of Genetic Psychology, 147, 295–302.

    Article  Google Scholar 

  • McBurney, D. H., Gaulin, S. J. C., Devineni, T., & Adams, C. (1997). Superior spatial memory of women: Stronger evidence for the gathering hypothesis. Evolution and Human Behavior, 18, 165–174.

    Article  Google Scholar 

  • McGuinness, D., & Sparks, J. (1983). Cognitive style and cognitive maps: Sex differences in representations of a familiar terrain. Journal of Mental Imagery, 7, 91–100.

    Google Scholar 

  • Miller, L. K., & Santoni, V. (1986). Sex differences in spatial abilities: Strategic and experiential correlates. Acta Psychologica, 62, 225–235.

    Article  PubMed  Google Scholar 

  • Moffat, S. D., Hampson, E., & Hatzipantelis, M. (1998). Navigation in a “virtual” maze: Sex differences and correlation with psychometric measures of spatial ability in humans. Evolution and Human Behavior, 19, 73–87.

    Article  Google Scholar 

  • Montello, D. R., Lovelace, K. L., Golledge, R. G., & Self, C. M. (1999). Sex-related differences and similarities in geographic and environmental spatial abilities. Annals of the Association of American Geographers, 89, 515–534.

    Article  Google Scholar 

  • Morton, N., & Morris, R. G. (1995). Image transformation dissociated from visuospatial working memory. Cognitive Neuropsychology, 12, 767–791.

    Google Scholar 

  • Ozel, S., Larue, J., & Molinaro, C. (2004). Relation between sport and spatial imagery: Comparison of three groups of participants. Journal of Psychology: Interdisciplinary and Applied, 138, 49–63.

    Article  Google Scholar 

  • Paivio, A., & Clark, J. M. (1991). Static versus dynamic imagery. In C. Cornoldi & M. A. McDaniel (Eds.), Imagery and cognition (pp. 221–245). New York: Springer.

    Google Scholar 

  • Pearson, D. G., Logie, R. H., & Gilhooly, K. J. (1999). Verbal representations and spatial manipulation during mental synthesis. European Journal of Cognitive Psychology, 11, 295–314.

    Google Scholar 

  • Peters, M., Laeng, B., Latham, K., Jackson, M., Zaiyouna, R., & Richardson, C. (1995). A redrawn Vandenberg and Kuse mental rotations test: Different versions and factors that affect performance. Brain and Cognition, 28, 39–58.

    Article  PubMed  Google Scholar 

  • Phillips, C. A., Rolls, S., Rouse, A., & Griffiths, M. D. (1995). Home video game playing in schoolchildren: A study of incidence and patterns of play. Journal of Adolescence, 18, 687–691.

    Article  Google Scholar 

  • Robert, M., & Héroux, G. (2004). Visuo-spatial play experience: Forerunner of visuo-spatial achievement in preadolescent and adolescent boys and girls? Infant and Child Development, 13, 49–78.

    Article  Google Scholar 

  • Robert, M., & Morin, P. (1993). Gender differences in horizontality and verticality representation in relation to initial position of the stimuli. Canadian Journal of Experimental Psychology, 47, 507–522.

    PubMed  Google Scholar 

  • Robert, M., & Tremblay, S. (1992). Gender differences in water-level representation as a function of information on state of liquid. Journal of Genetic Psychology, 153, 231–235.

    Google Scholar 

  • Sandstrom, N. J., Kaufman, J., & Huettel, S. A. (1998). Males and females use different distal cues in a virtual environment navigation task. Cognitive Brain Research, 6, 351–360.

    Article  PubMed  Google Scholar 

  • Santos, P., Guerra, S., Ribeiro, J. C., Duarte, J. A., & Mota, J. (2003). Age and gender-related physical activity. Journal of Sports Medicine and Physical Fitness, 43, 85–89.

    PubMed  Google Scholar 

  • Saucier, D. M., Green, S. M., Leason, J., MacFadden, A., Bell, S., & Elias, L. J. (2002). Are sex differences in navigation caused by sexually dimorphic strategies or by differences in the ability to use the strategies? Behavioral Neuroscience, 116, 403–410.

    Article  PubMed  Google Scholar 

  • Schmitz, S. (1997). Gender-related strategies in environmental development: Effects of anxiety on wayfinding in and representation of a three-dimensional maze. Journal of Environmental Psychology, 17, 215–228.

    Article  Google Scholar 

  • Sholl, M. J., & Bartels, G. P. (2002). The role of self-to-object updating in orientation-free performance on spatial-memory tasks. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28, 422–436.

    Article  PubMed  Google Scholar 

  • Silverman, I., & Eals, M. (1992). Sex differences in spatial abilities: Evolutionary theory and data. In J. H. Barkow, L. Cosmides, & J. Tooby (Eds.), The adapted mind: Evolutionary psychology and the generation of culture (pp. 533–549). London: Oxford University Press.

    Google Scholar 

  • Stumpf, H. (1993). Performance factors and gender-related differences in spatial ability: Another assessment. Memory and Cognition, 21, 828–836.

    Google Scholar 

  • Subrahmanyam, K., & Greenfield, P. M. (1994). Effect of video game practice on spatial skills in girls and boys. Journal of Applied Developmental Psychology, 15, 13–32.

    Article  Google Scholar 

  • Vecchi, T. (1998). Visuo-spatial imagery in congenitally totally blind people. Memory, 6, 91–102.

    PubMed  Google Scholar 

  • Vecchi, T. (2001). Visuo-spatial processing in congenitally blind people: Is there a gender-related preference? Personality and Individual Differences, 30, 1361–1370.

    Article  Google Scholar 

  • Vecchi, T., & Girelli, L. (1998). Gender differences in visuo-spatial processing: The importance of distinguishing between passive storage and active manipulation. Acta Psychologica, 99, 1–16.

    Article  PubMed  Google Scholar 

  • Vecchi, T., Monticellai, M. L., & Cornoldi, C. (1995). Visuo-spatial working memory: Structures and variables affecting a capacity measure. Neuropsychologia, 33, 1549–1564.

    Article  PubMed  Google Scholar 

  • Vederhus, L., & Krekling, S. (1996). Sex differences in visual spatial ability in 9-year-old children. Intelligence, 23, 33–43.

    Article  Google Scholar 

  • Vilhjalmsson, R., & Kristjansdottir, G. (2003). Gender differences in physical activity in older children and adolescents: The central role of organized sport. Social Science and Medicine, 56, 363–374.

    PubMed  Google Scholar 

  • Voyer, D., Voyer, S., & Bryden, M. P. (1995). Magnitude of sex differences in spatial abilities: A meta-analysis and consideration of critical variables. Psychological Bulletin, 117, 250–270.

    Article  PubMed  Google Scholar 

  • Webley, P. (1981). Sex differences in home range and cognitive maps in eight-year old children. Journal of Environmental Psychology, 1, 293–302.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carol A. Lawton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lawton, C.A., Hatcher, D.W. Gender Differences in Integration of Images in Visuospatial Memory. Sex Roles 53, 717–725 (2005). https://doi.org/10.1007/s11199-005-7736-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11199-005-7736-1

Key Words

Navigation